USP Excipients Stakeholder Forum Wednesday, November 13, 2019

Excipient Nomenclature Development - FDA Draft IID Guidance Comments

Hong Wang Senior Manager, Science–Excipients

Excipient Nomenclature Joint Subcommittee

- Understanding Excipients that helps develop an Excipient Nomenclature Guideline
- Being responsible for
 - recommending an appropriate title for a new excipient monograph
 - recommending a change to an official monograph title
- Working on a Stimuli article based on discussions for PLGA [IID name: Poly(DL-Lactic-co-Glycolic Acid), (50:50; 12000 MW)] new monographs

Understanding Excipients

Excipient Expert Committees

▶ Published a *Stimuli* article in *PF* 44(3)[May – June 2018]

The Complexity of Setting Compendial Specifications for Excipient Composition and Impurities

Understanding Excipients

The Stimuli article in PF 44(3) defines

- Nominal component: Substance typically found in the excipient that is expressed by the official name and definition and/or assay provided in the USP monograph.
- Minor component: A component of an excipient which is not the nominal component or, where the official name does not relate to the excipient components, not the major component.
- Simple excipient: An excipient composed of a single main substance with a well-defined chemical structure that can be characterized well analytically.
- Complex excipient: Any excipient that does not fit the definition of a simple excipient.
- Concomitant component: please refer to the Stimuli article.
- Added substances in official substances: please refer to the Stimuli article.
- Excipient impurity: please refer to the Stimuli article.

Understanding Excipients

The Stimuli article in PF 44(3) presents excipient classification

Figure 1. Classes of substances used as excipients.

- Isostearyl Isostearate
 - Simple excipient organic, synthetic ester (mixture), new monograph
 - Title was approved in Nov. 2016
 - The assay based on the HPSEC technique determined the content of nominal component, isostearyl isostearate, to be NLT 85.0%
 - From the approved title, we may be able to propose nominal component to be monograph title

Neohesperidin Dihydrochalcone

- Simple excipient organic, a purified excipient, new monograph
- Title was approved in June 2017
- The assay based on the HPLC determined the content of nominal component, neohesperidin dihydrochalcone, to be NLT 96.0% and NMT 102.0%.
- Product's impurity profile is provided and specifications are established
- From the approved title, we may be able to propose nominal component to be monograph title

- Methyl Acrylate, Methyl Methacrylate and Methacrylic Acid (7:3:1) Copolymer 280000 Dispersion
 - Complex excipient organic, synthetic polymer, new monograph
 - Title was approved in January 2018
 - From the approved title, we may be able to propose a title for a new copolymer

Monomer 1 and Monomer 2 (monomer ratio) Copolymer xxxx [xxxx – weight-average molecular weight value]

Monomer 1, Monomer 2, and Monomer 3 (monomer ratio) Copolymer xxxx

- ▶ Polypropylene Glycol 11 Stearyl Ether
 - Complex excipient organic, synthetic polymer, new monograph
 - Title was approved in March 2018
 - The prefix term "Polyoxyl" cannot be continually used due to its nonspecific nature
 - If polymerization with ethylene oxide, the prefix term "Polyethylene Glycol ..." will be used.
 - If polymerization with propylene oxide, the prefix term "Polypropylene Glycol" will be used.

- Polypropylene Glycol 11 Stearyl Ether (Continued)
 - For a derivative of Polypropylene Glycol and/or of Polyethylene Glycol, use monomer repeating unit number after the prefix term
 Polypropylene Glycol xx ... End Cap Group

 [xx monomer repeating unit]
 Polyethylene Glycol xx ... End Cap Group
 - For Polyethylene Glycol, use weight-average molecular weight after the prefix term

Polyethylene Glycol xxxx [xxxx – weight-average molecular weight]

Examples: official monographs

Polyethylene Glycol 3350
Polyethylene Glycol 3350 and Electrolytes for Oral Solution

- Sucrose Diacetate Hexaisobutyrate
 - Complex excipient organic, semi-synthetic mixture, new monograph
 - Title was approved in July 2018
 - Food Chemicals Codex has a monograph entitled:
 - Sucrose Acetate Isobutyrate
 - The numbers of substituting groups (acetate and isobutyrate) are included within the NF monograph title
 - Sucrose Diacetate Hexaisobutyrate

Myristyl Lactate

- Complex excipient organic, semi-synthetic mixture, new monograph
- Title was approved in October 2018
- Myristyl Lactate in FDA inactive ingredient database used in topical formulation, functional category: emollient
- Myristyl Lactate may contain NLT 70% of myristyl lactate (C₁₇H₃₄O₃) and NMT 20% of myristyl alcohol (C₁₄H₃₀O)

Recent Updates: Excipient Nomenclature

- ► Glyceryl Monocaprylate NF, USP 41-NF 36
 - CONTENTS OF MONOGLYCERIDES, DIGLYCERIDES, AND TRIGLYCERIDES in the Assay are determined by GC/FID

	Content of Monoesters (%)		Content of Diesters (%)		Content of Triesters (%)	
	Min.	Max.	Min.	Max.	Min.	Max.
Type I	40.0	75.0	20.0	50.0	1	15.0
Type II	75.1	1	- 1	24.9	_	5.0

- ▶ Based on FDA's *Request for Revision*, USP split the monograph and proposed these changes in *PF* 44(5)[Sept.-Oct 2018] for public comment
 - Type I included in a new monograph entitled Glyceryl Mono and Dicaprylate
 - The new title, <u>Glyceryl Mono and Dicaprylate</u>, was approved in March 2018
 - Type II represented by the existing monograph, Glyceryl Monocaprylate

Recent Updates: Excipient Nomenclature

- ► Glyceryl Monocaprylocaprate NF, USP 41-NF 36
 - CONTENTS OF MONOGLYCERIDES, DIGLYCERIDES, AND TRIGLYCERIDES in the Assay are determined by GC/FID

	Content of Monoesters (%)		Content of Diesters (%)		Content of Triesters (%)	
	Min.	Max.	Min.	Max.	Min.	Max.
Type I	40.0	75.0	20.0	50.0	1	15.0
Type II	75.1	_	_	24.9	-	5.0

- ▶ Based on FDA's *Request for Revision*, USP split the monograph and proposed these changes in *PF* 44(5) for public comment
 - Type I included in a new monograph entitled <u>Glyceryl Mono and Dicaprylocaprate</u>
 - The new title, Glyceryl Mono and Dicaprylocaprate, was approved in March 2018
 - Type II represented by the existing monograph, <u>Glyceryl Monocaprylocaprate</u>

Excipient Nomenclature Working Group

- Since Sept. 2019, the Excipient Nomenclature working group is formed
 - Developing a Stimuli article or a positional paper
 - Drafting the excipient nomenclature guideline
- FDA published the draft IID guidance in July 2019
 - Excipient PUT worked with Global External Affair dept. and submitted FDA USP comments on the draft IID guidance
 - Analyzing inconsistence between USP/NF official titles, GSRS preferred names, and IID naming
 - Preparing further discussions with FDA on this topic

Thank You

Empowering a healthy tomorrow

Discontinuation

Due to limitations in excipients, 28 percent of respondents experienced a discontinuation of a drug's development for the U.S. market. The phases at which the discontinuation occurred were most commonly Pre-IND and IND.

Q8 Have you experienced a discontinuation of a drug's development for the U.S. market because you were limited to using excipients used in approved drugs in the U.S.? n=264-all responses, n=208, excluding DK responses. Q8A Again, consider the dosage form you have the most experience formulating: \${Q3/SelectedChoices}. Please select the phase at which the discontinuation occurred. Please select all that apply. N=75.

Discontinuation: Reasons

The most commonly cited reason for the discontinuation of drug development was the inability to formulate a stable delivery of API and to overcome insolubility/permeability of API using the available excipients.

Other reasons not related to the excipients used in approved drugs in the U.S. market (please specify)

1

4. Challenges faced with using Novel/New excipients

New/Novel Excipients: Challenges

Respondents who work in companies with greater than 500 employees were more likely to experience challenges: 84% vs. 67% for those with 500 or less employees.

- More than three quarters of respondents (77 percent) have experienced challenges using novel excipients in advancing formulation through drug development for the U.S. market.
- Regulatory issues are the most common challenges.

2

25%

Data Findings

5. Cross Tabulations of Results

By Manufacturer

Cross Tabulation

By Drug Manufacturer

- Generic Drugs (small molecule)
- Branded Drugs (small molecule)
- Branded Biologics
- Branded Biosimilars

By Excipient Manufacturer

- Excipient Manufacturer
- Excipient Distributor

Questions:

Q 5 For dosage form [XXX], which you indicated having the most experience formulating, please rate the importance of excipients in advancing a formulation through drug development. [Likert scale used: Critical, Somewhat important, Very important; Aggregate by Critical, Very Important: By Manufacturer – Responding as Yes]

Q6 How often have excipients used in approved drugs in the U.S. limited your ability for drug development for the U.S. market? [Likert scale used: Always, Never, Often, Sometimes; Responses are an aggregate of Always/Often/Sometimes]

Q 7 Have you or your organization reformulated a drug product for the U.S. market because you were limited to using excipients used in approved drugs in the U.S.? [Likert scale used: Yes/no; Responses are Yes]

Q8 Have you experienced a discontinuation of a drug's development for the U.S. market because you were limited to using excipients used in approved drugs in the U.S? [Likert scale used: Yes/no; Responses are Yes]

Q10 Have you or someone you have supervised experienced challenges using novel excipients for the U.S. market in advancing a formulation through drug development? [Likert scale used: Yes/no; Responses and Yes]

Cross Tabulation Summary

Question	Drug Manufacturer*	Excipient Manufacturer*
Q 5 For dosage form [XXX], which you indicated having the most experience formulating, please rate the importance of excipients in advancing a formulation through drug development	95%	97%
Q6 How often have excipients used in approved drugs in the U.S. limited your ability for drug development for the U.S. market?	81%	92%
Q 7 Have you or your organization reformulated a drug product for the U.S. market because you were limited to using excipients used in approved drugs in the U.S.?	45%	73%
Q8 Have you experienced a discontinuation of a drug's development for the U.S. market because you were limited to using excipients used in approved drugs in the U.S?	25%	67%
Q10 Have you or someone you have supervised experienced challenges using novel excipients for the U.S. market in advancing a formulation through drug development?	71%	87%

^{*} See slide 26 "Cross Tabulation" for definition and scales

Thank You

Empowering a healthy tomorrow