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is second only to insulin as a natural product therapeutic agent. A 
monograph for heparin entered the USP in 1950, with tests for identity, 
strength, quality, purity and potency5. This pharmacopeia standard was 
one of several elements in the multi-tiered safety net that helped assure 
practitioners they were administering, and patients they were receiv-
ing, good quality, safe and effective heparin drug products. Gaps in this 
safety net appeared in late 2007 and early 2008 when epidemiologic6 
and analytical investigations7 indicated that an adulterant in heparin 
products was associated with severe patient morbidity and mortality8. 
Although the details of this episode may never be fully known, it appears 
to have been an example of intentional adulteration for gain of profit. 
The adulterant was capable of meeting antiquated tests, including the 
USP clotting test for potency. An immediate recall of contaminated 
heparin was issued in United States, leading to acute shortages of this 
lifesaving drug in the US market.

The lack of specific tests for controlling the quality and purity of hepa-
rin products had failed to prevent contaminants from entering into the 
market place. In the wake of the heparin contamination crisis, a research 
team, including the Ronzoni Institute (Milan, Italy), the FDA, Rensselaer 
Polytechnic Institute (Troy, NY, USA) and the Massachusetts Institute 
of Technology (Cambridge, MA, USA), identified the contaminant as 
oversulfated chondroitin sulfate (OSCS)9,10. In addition, FDA reached 
out to the USP to initiate a rapid revision of the existing monograph. The 
USP responded by convening a panel of international experts on heparin 
to develop necessary compendial improvements. The initial changes, 
implemented in the United States after only three months, included the 
addition of critical identity tests, employing capillary electrophoresis and 
proton nuclear magnetic resonance (1H-NMR)11. These initial changes 
heralded a dramatic shift in our understanding of the role of identity 
testing for heparin products in danger of contamination or adulteration. 
In addition to testing for the identity of heparin, these tests introduce 
a requirement to detect the presence of a known adulterant and other 
impurities. Beyond the immediate measures taken, a comprehensive 
overhaul of quality expectations for heparin followed. This revision took 
into account the complexities and impact of manufacturing processes on 
heparin structure, and the realities of a global supply chain.

Over the years since the contamination crisis, the USP undertook 
(and has concluded) a three-stage set of revisions to the compendial 
quality requirements. The introduction of these additional changes 
aimed at striking a balance between two important goals: first, further 
strengthening the quality control of heparin; and second, at the same 
time, ensuring continuous availability of pharmaceutical heparin. The 
revisions were advanced in a data-driven manner (Fig. 1). This approach 
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The contamination of the widely used lifesaving anticoagulant 
drug heparin in 2007 has drawn renewed attention to the 
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control and standardization of complex biological medicines 
from natural sources. Heparin is a linear, highly sulfated 
polysaccharide consisting of alternating glucosamine and 
uronic acid monosaccharide residues. Heparin has been used 
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not changed substantially since its introduction. The 2007 
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how the US Food and Drug Administration (FDA), the United 
States Pharmacopeial Convention (USP) and international 
stakeholders collaborated to redefine quality expectations 
for heparin, thus making an important natural product better 
controlled and less susceptible to economically motivated 
adulteration.

The anticoagulant heparin has been in clinical use since 1935 (refs. 1–4).
Heparin is one of the oldest drugs still in clinical use, and in volume 
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of glycosyltransferases, sulfotransferases and an epimerase. The modi-
fications by these biosynthetic enzymes are only partially completed, 
resulting in a highly heterogeneous mixture of polysaccharides varying 
in sulfation pattern and saccharide chain length16. Heparin undergoes 
cleavage by heparanase, further increasing its structural heterogeneity17. 
Both the length of the chains and variation in sulfation patterns affect 
the anticoagulant activity of heparin18.

Heparin approved in the United States is derived from porcine 
intestinal mucosa. The mucosa is extracted into an aqueous solution, 
captured from the extract by complex formation or binding to a resin, 
eluted with salt, precipitated with organic solvent, and finally purified 
by oxidation and further precipitations, filtration and a final drying 
step (Supplementary Note 1 and Supplementary Fig. 1). Other GAG 
impurities, such as chondroitin and dermatan sulfates, which have disac-
charide-repeating units different from heparin (Fig. 2), can be found 
in pharmaceutical grade heparin. Improvements to manufacturing 
processes in recent years have reduced the levels of GAG impurities19. 
Certain manufacturing processes affect the structure of heparin. For 
example, oxidation by KMnO4 is used to remove the core protein from 
the heparin product. This reaction alters the reducing end of heparin 
through several chemical side-reactions, leading to unnatural saccha-
ride residues20. Other structural changes in heparin (i.e., O-acetylation 
and desulfation) resulting from manufacturing processes have also been 
reported21,22.

Thus, the implementation of purity standards and tests to charac-
terize heparin had to take into account three important issues: first, a 
molecular-level definition of heparin as a polydisperse product; second, 
a limit of detection of 0.1% for OSCS; and third, product variants arising 
from the manufacturing and purification steps employed.

required the analysis of many batches of heparin by the FDA, USP, and 
heparin manufacturers. Beyond the initial addition of identity tests, the 
second stage of revisions shifted potency testing from a clotting test to 
measuring the antithrombin-mediated inhibition of factor Xa and fac-
tor IIa activities, two proteases of the blood coagulation cascade. This 
change increased the specificity for potency testing. Stage 2 revision also 
introduced additional tests and tightened existing limits for impurities12. 
At the same time, the spectroscopic and separations-based components 
of the identification test were further refined. Since 2009, additional 
focus has been placed on the following: first, the control of heparin raw 
materials, as reflected in the FDA-issued guidance13; second, the incen-
tive to further tighten limits for additional process impurities, such as 
proteins and nucleic acids; and third, the control of heparin’s polydis-
persity by molecular size analysis14. This Perspective summarizes the 
scientific rationale behind a set of orthogonal tests and FDA’s actions to 
both enforce these tests and ensure the safety of heparin.

Structural heterogeneity and purity of heparin
Although heparin has been used for 80 years, a simple set of standards 
for its identity and purity has not existed because heparin is a com-
plex mixture of highly sulfated polysaccharides. Pharmaceutical grade 
heparin is a polydisperse glycosaminoglycan (GAG) composed of disac-
charide repeating units of 1→4 linked uronic acid (a-l-iduronic acid 
or b-d-glucuronic acid) and a-d-glucosamine1–3,14,15. Each mono-
saccharide unit can be differently sulfated, leading to a high degree 
of structural heterogeneity (Fig. 2)15. The structural heterogeneity of 
heparin is primarily attributed to heparin biosynthesis. Heparin is bio-
synthesized as a proteoglycan that consists of a core protein and heparin 
polysaccharide side chains. Heparin chain biosynthesis involves a series 
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Figure 1  Heparin crisis and resolution timeline. After the contamination crisis, the USP undertook and concluded a three-stage set of revisions to the 
Heparin Sodium monograph. Stage 1 involved the initial addition of identity tests and introduction of reference standards to prevent contaminated heparins 
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Methods establishing heparin identification
Orthogonal methods are used in the revised heparin monograph to 
determine heparin’s identity (Fig. 3). These four methods were designed 
to confirm the chemical structures of heparin products and to measure 
batch-to-batch or manufacturer-to-manufacturer variability. The tests 
should catch contaminants before they enter the supply chain, according 
to FDA’s guidelines13. The orthogonal tests are complementary, prob-
ing chemical fine structure, charge characteristics, molecular weight 
properties and anticoagulant activity, allowing comprehensive charac-
terization of a complex macromolecule like heparin. 1H-NMR (nuclear 
magnetic resonance) is used to characterize the structures of monosac-
charide building blocks and provides linkage information on heparin 
(Fig. 3a). Strong anion exchange–high performance liquid chromatog-
raphy (SAX–HPLC) assesses the density of the sulfo groups present on 
heparin and serves as a tool to detect the presence of OSCS and other 
potential contaminants and impurities (Fig. 3b). The molecular weight 
distribution measurement is used to determine the polydispersity, an 
intrinsic property of GAGs (Fig. 3c). The anti-factor-Xa and anti-factor-
IIa activity measurements are designed to determine the anticoagulant 
activity that is specifically attributed to the action of heparin (Fig. 3d).

Given the structural complexity of heparin, comprehensive 1H-NMR 
analyses of the molecule can be performed only by highly trained NMR 
spectroscopists23–25. Concerns were raised over the reliability from the 
1H-NMR analyses performed by relatively inexperienced technicians 
at heparin manufacturing facilities. In response to these concerns, the 
USP’s panel of experts designed a simplified version of 1H-NMR analy-
sis. Instead of completely analyzing the entire spectrum, the operator 
is required to identify only five major groups of signals belonging to 
heparin (Fig. 3a). In addition, several designated regions from 0 to 
10 p.p.m. of the 1H-NMR spectrum are also examined, as any signals 
found in these regions are likely to be associated with impurities in a 
heparin product. This simplified approach was then validated on 31 
heparin samples26. Another critical application of 1H-NMR is to identify 
persulfonated polysaccharide-based adulterants, especially OSCS. The 
1H-NMR spectrum of a heparin sample contaminated with OSCS dis-
plays a distinctive signal at around 2.15 p.p.m. (Supplementary Fig. 2), 
offering a reliable method to determine the OSCS contaminant in hepa-
rin products9. Appropriately validated 1H-NMR analysis using either a 
300 MHz instrument or a 500 MHz instrument is capable of detecting 
the level of OSCS as low as 0.25% (w/w). The use of 500 MHz instru-
ment, however, offers advantages over 300 MHz instrument: shorten-
ing analysis time and providing greater assurance of drug quality as 
the instrument has higher resolution and greater sensitivity. Additional 
descriptions about 1H-NMR analysis are presented in Supplementary 
Note 2.

As a negatively charged polysaccharide, heparin binds to an anion 
exchange chromatography column, and heparin’s elution correlates with 
its molecular size and the density of negative charges of its sulfo and 
carboxyl groups. After careful comparison of different chromatography 
methods, the USP panel chose SAX–HPLC as the method to character-
ize heparin products. Three factors influenced the USP panel’s choice: 
resolution, mobile phase suitability and the column matrix suitability. 
The mobile phase uses sodium perchlorate due to its transparency at 
200 nm, the wavelength used to detect heparin eluted from the chro-
matographic column. The selection of the SAX column, tightly binding 
both heparin and OSCS, is especially important for detection of low 
levels of OSCS contaminant (Fig. 2c). An excellent separation of heparin 
and OSCS can be achieved by SAX–HPLC and method optimization 
allowed the detection of 0.1% OSCS in heparin (Fig. 3b)27. Capillary 
electrophoresis was initially used to detect OSCS in heparin11, but it 
was not used in the revised (stage 2 and stage 3) monograph, because 

SAX–HPLC analysis is more convenient in manufacturing quality con-
trol laboratories (Supplementary Note 3).

Measuring the molecular weight (MW) distribution ensures the 
consistency of heparin product28,29. Results from a coordinated study 
involving 21 laboratories from eight countries to measure 122 hepa-
rin samples show that the average MW of heparin lies in the range of 
15–19 kDa30. In addition, the shape of the MW distribution curve 
is distinctive (Fig. 3c), with very high MW chains (>24 kDa) typi-
cally comprising <20% of a heparin sample, and shorter chains (8–16 
kDa) having a larger area under the MW distribution curve than the 
longer heparin chains (16–24 kDa). Based on these findings, the USP 
panel set the upper and lower limits for the average MW, an upper 
limit for very high MW and a lower limit of 1.0 for the ratio of the 
populations of shorter and longer heparin chains ((8–16 kDa)/(16–24 
kDa)) (Supplementary Note 4 and Supplementary Table 1).

Determination of heparin’s inhibition of factor Xa and factor IIa 
(or thrombin), known as anti-Xa and anti-IIa activities, improved the 
specificity of the potency test. This assay is based on heparin’s ability to 
potentiate antithrombin31, a coagulation inhibitor, to inactivate factor 
IIa and factor Xa (Fig. 3d). Utilization of purified reagents, includ-
ing factor IIa, factor Xa, and specific polypeptide-based chromogenic 
substrates, in the assay allows the measurement of specific effects from 
heparin, avoiding the potential for interference from plasma proteins 
or the presence of OSCS (Supplementary Note 5 and Supplementary 
Table 2). Over the past 30 years, there has been a 10% drift in potency 
definition between USP unit and international unit (IU) due to the 
improved quality of reference materials and potency assay changes32. 
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Figure 2  Structures of disaccharide-repeating units of glycosaminoglycans. 
(a) Three different disaccharide-repeating units found in heparin. The 
disaccharide of -IdoA2S-GlcNS6S- is most abundantly present in heparin, 
where IdoA2S represents 2-O-sulfo-iduronic acid; and GlcNS6S represents 
6-O-sulfo-N-sulfoglucosamine. (b) The disaccharide-repeating units of 
dermatan sulfate and chondroitin sulfate. The disaccharide-repeating 
units of dermatan and chondroitin sulfates contain galactosamine. 
Furthermore, the uronic acid and galactosamine residues are linked 
through β1→3 linkages. (c) The disaccharide-repeating unit of oversulfated 
glycosaminoglycans, oversulfated chondroitin sulfate (OSCS), an adulterant 
product of chemically modified chondroitin sulfates found in contaminated 
heparin products. R1 = –H or –SO3Na; R2 = –H, –Ac or –SO3Na.
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drug substances that are imported from other countries. Starting in 
November of 2008, FDA began to establish its offices in Asia and around 
the world. The FDA’s international offices increased collaboration with 
local regulatory agencies and established a better understanding of the 
foreign manufacturers. These efforts are particularly important to safe-
guard the supply chain of heparin as 50–70% of the heparin used in 
United States is imported from other countries.

Title VII of the Food and Drug Administration Safety and Innovation 
Act (FDASIA) gives the FDA wider authority to monitor drug supply 
chains. FDASIA Section VII enhances FDA’s functions in inspecting 
manufacture sites and production records of domestic and international 
suppliers, and authorizes FDA to detain or destroy those drug sub-
stances that are adulterated or counterfeit products. A new drug safety 
law, known as the Drug Supply Chain Security Act, became effective 
in January 2015, requiring an electronic identifier be present on the 

The employment of the new potency assay and new USP Heparin 
Sodium for Assays reference standard aligned both units, and brought 
minimum potency requirements in line with expectations for modern 
heparin products. Potency analysis of 90 heparin samples showed that 
narrowing the range of the anti-factor Xa to anti-factor IIa ratio, a 
characteristic potency indicator for heparin, to 0.9–1.1, minimizes 
the risk of adulteration (Supplementary Note 5 and Supplementary 
Fig. 3).

Tests for impurities
The new monograph tightens the allowable levels of organic solvents 
(introduced from manufacturing processes) and impurities, like 
chondroitin or dermatan sulfates, protein and nucleotidic impurities, 
in the heparin product. Improved analytical methods are introduced 
to improve impurity detection sensitivity.

HPLC-based methods are used for measur-
ing the levels of galactosamine and nucleotides 
to monitor the level of chondroitin and der-
matan sulfates and nucleotidic impurities, 
respectively (Supplementary Figs. 4 and 5). 
The protein impurity level is monitored by the 
Lowry method, to measure protein levels as 
low as 0.1% (w/w) (Supplementary Note 6).

Safeguarding heparin’s supply chain
The FDA’s responses to the 2008 heparin con-
taminant crisis were swift and comprehen-
sive. Since the identification of OSCS as the 
contaminant in heparin7,9, the FDA has been 
maintaining an active research program for 
discovering new methods to monitor the level 
of OSCS or of various impurities in heparin 
products19,25,28,33–47. These extensive research 
activities provide a critical scientific founda-
tion for the heparin monograph revisions from 
initial stages to the latest stage. Equipped with 
the most updated and advanced knowledge 
in heparin chemistry and analysis, the FDA 
research team advises the agency how to 
respond to any potential poor quality hepa-
rin products that may enter the supply chain. 
In addition, the FDA requires manufacturers 
to provide analytical data for every batch of 
drug product entering the US market. The 
FDA reviews these data before accepting ship-
ments of the drug. Furthermore, the FDA has 
increased the number of random tests on those 
drugs considered to be at high risk for poten-
tial issues with drug quality, including heparin 
(http://www.fda.gov/drugs/scienceresearch/
ucm407277.htm). Finally, the FDA in the new 
Office of Pharmaceutical Quality has estab-
lished the Office of Process and Facilities with 
a mission to integrate review, inspection, sur-
veillance and research across a product’s life 
cycle. For heparin, this integration will assure 
that quality heparin products are produced and 
monitored by the agency for as long as the drug 
is still used.

The heparin crisis in 2008 also triggered a 
series of policy changes at the FDA involving 
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key step in generating blood clots. The dashed arrows depict the action sites in the blood coagulation 
cascade by the complex of AT/heparin.
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United States regulates the quality of medicines, the expectation is that 
the episode of contamination of heparin drug substance with OSCS 
will continue to have a profound influence on regulatory oversight. A 
particular example is the recently concluded Drug Quality and Security 
Act, the latter part of which speaks to good supply chain practices.

The new USP heparin monograph can now presumably protect 
against contamination with OSCS, provided Good Manufacturing 
Practices are followed and testing occurs when ingredients are taken 
out of quarantine and at batch release. Are there other contaminants that 
could ‘get past’ the tests of the new monograph? We do not think so, but 
even if that conviction is borne out, the overall challenge of a potency 
test, important for many natural source and recombination therapeutics, 
substantially broadens the risk, compared with unequivocal and specific 
analytical techniques for chemically synthesized medicines.

Taken together, the experience of heparin in the United States and 
elsewhere shows that ensuring the integrity of the supply chain of natu-
rally sourced biologic drugs is fraught with challenges—to manufactur-
ers, to regulatory agencies and to practitioners. The steps taken by US 
regulatory authorities and the US pharmacopeia following the heparin 
contamination events in 2007 and 2008 have put in place safeguards 
giving greater confidence that contaminants can be prevented from 
entering the marketplace in a similar manner. 

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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