December 8th, 2022

Control and Characterisation of Botanically Derived Cannabis Drugs **The GW Experience**

Manufacture & Control

Specifications

Complex Botanical Characterisation

Semi-synthetics (isolates)

Synthetic CBD

Epidiolex Manufacturing Process Steps

Crystallisation/API

Pure Plant Isolation Area

Bulk & Filling/DP

Pelleting

Milling

Extraction

Decarboxylation

Labelling DP

Control of Extracts and Intermediates - Testing Points for Epidiolex

Low spec glass growing	ξ		Decarboxylation	Decarboxylated BRM – Assay, Appearance, ID, decarb efficienc
Large scale manual harvesting	Pre-Milled BRM – Macroscopic & Microscopic ID, Foreign Matter, Assay		Extraction	Extract and Spent BRM – Assag Appearance, ID, extraction efficient
Direct drying	Appearance	sartorius	Winterisation	Refined Extract – Assay, Appearanc Alkanes, Residual ethanol
Baling	Baled BRM – Assay, Appearance, ID, Loss on Drying		Crystallisation	CBD API – Comprehensive Specific for assay and impurities
Pelleting	Pelleted BRM - Assay, Appearance, ID, Loss on Drying		DP Manf/Pack	Finished Product – Comprehensi Specification for assay and impuri
	Milled Pellets – Assay, Appearance, ID			

Specifications – Semi-Synthetic v Botanical

Epidiolex CBD API Specification

	Test	Specification		Test	Specification
1.	Appearance	White to pale yellow crystals	1.	Appearance	Brown viscous semi-solid
2.	Identification A: UPLC-UV	Retention time of major peak corresponds to that of	2.	Identification A: TLC	Spots have characteristic Rt and colours, compared with CBD standar
		certified CBD Reference Standard	3.	Identification B: HPLC	Positive for CBD
3.	Identification B: FT-IR	Conforms to reference spectrum for certified CBD	4.	CBD Content	60-72% w/w
		Reference Standard	5.	Total Cannabinoids	68-84% w/w
4. 5. 6.	Identification C: Specific Optical Rotation CBD Content Impurities (Other Cannabinoids): - CBDV - CBD-C4 - CBD-C1 - Δ ⁹ -THC - Individual unspecified impurities - Total unspecified impurities	-121° to -132° (in ethanol) 98.0-102.0% w/w NMT 1.0% w/w NMT 0.5% w/w NMT 0.15% w/w NMT 0.15% w/w NMT 0.1% w/w NMT 0.1% w/w		-CBD RS 0. 35 -CBDV -CBDA -CBG -CBN -THC -CBC -Unspecified Cannabinoids Residual Solvents: - Ethanol Total Aflatoxins (B ₁ , B ₂ , G ₁ & G ₂)	NMT 0.2% w/w 0.8-1.2% w/w NMT 0.8% w/w 0.6 -1.7% w/w NMT 0.1% w/w 2.1-3.1% w/w 2.8-3.8% w/w NMT 3.1% w/w NMT 3% w/w
7. 8. 9.	Residual Solvents: - Heptane - Ethanol Residual Water Residue on Ignition	NMT 0.5% w/w NMT 0.5% w/w NMT 0.3% w/w NMT 0.2% w/w	9.	Microbial Quality: - Total Aerobic Microbial Count (TAMC) - Total combined Yeasts/Moulds Count (TYMC) - Bile tolerant gram -ve rods - Salmonella - Escherichia coli - Staphylococcus aureus	NMT10 ⁴ CFU/g NMT10 ² CFU/g NMT10 ² CFU/g Absent in 10g Absent in 1g
S harmac		*Partial Specification – Non-Cannabinoids not included	10.	Elemental Impurities: Cadmium Lead Arsenic Mercury Cobalt Nickel Vanadium	NMT 100ppm NMT 30ppm NMT 300ppm NMT 1000ppm NMT 4000ppm NMT 2000ppm A GW Pharmaceuticals F

Nabiximols CBD BDS IND Specification*

FDA comments....on Characterisation of Botanical Extracts

- Sativex
 - Produced from 2 Botanical Drug Substances Originally 5 THC and 4 CBD Genotypes
 - EU/RotW Specification based on cannabinoids, Some characterisation data on non-cannabinoids provided with submission
 - FDA EOP2 meeting in 2010 Different approach Hold on phase 3.
- "provide total amounts of each class of non-cannabinoid compounds, as needed, for mass balance calculations."
- "...a minimum of 90% of the components of the drug substances should be monitored as either individual amounts or total fractions."
- "The proposed tests...in the BDS specification are insufficient to assure the quality and safety of each lot. You **must** include chromatographic fingerprint data and chemometric peak analyses for each major chemical class of the components of the BDS, including both cannabinoids and non-cannabinoid fractions. The fingerprint data are crucial to ensuring that minor components of the cannabinoid and other fractions, which may present safety and other concerns, are consistent from batch to batch. Your must expand your multivariate analysis to include non-cannabinoid and additional minor cannabinoid components, as appropriate."
- FDA also wanted evidence of similarity between pre-clinical, clinical and commercial BDSs.

Challenges for Botanical Extracts

Botanicals	
 Comparatively low Principal content 	count 480(
 Complex – typically hundreds of components 	4600
– Other cannabinoids	4400
– Plant compound classes	4200
 Medicine is the whole extract 	380(
 Impurities only non-plant derived 	360 (
 Pesticides, aflatoxins, micro, heavy metals 	
– Mass Balance/Characterisation	0.40
 Quantitative assessment 	0.35
 FDA demand for >90% w/w 	0.30
- Fingerprinting	0.25
– Qualitative assessment	0.15
	0.10
	0.05
GVV	0.00

pharmace

Characterisation – Initial Response

Compound Classes

- Methods in place for many non-cannabinoids
 - Terpenes
 - Triglycerides
 - Sterols/Triterpenes and Fat Soluble Vitamins
 - Carotenoids
- New methods developed
 - Free fatty acids
 - Cannabinoid Esters/Ethers (new class of compounds)
 - Total polar fraction
- Class Totals approach applied for mass balance

Process

- BDS very stable at -20°C retained samples available
- Comprehensive analytical program
 - 73 batches of THC BDS
 - 79 batches of CBD BDS
- Every year from 2004 to 2012 including...
 - Pre-clinical tox
 - Phase 2 clinical trial
 - Phase 3 clinical trial
 - Commercial
 - High and low cannabinoid content
 - Selected extreme non-cannabinoid

Characterisation – CBD BDS (n=79)

Cannabinoid		
CBD	65.83	
THC	2.53	lotal characterised
CBDA	0.29	
CBG	1.07	
CBC	3.24	
CBDV	0.89	
CBN	0.07	
Cis-THC	0.72	Non-cannabine
CBD RS 0.35	0.08	Caratanaida
Others	1.73	
		Iriglycerides
Total	76.4	Sterols
		Terpenes

Total

Residual ethanol

Polar fraction

Free fatty acids

Qualitative Fingerprinting for QC Analysis

GC, gas chromatography; LC, liquid chromatography; QC, quality control

- Verified ID test with power to distinguish...
 - Chemotypes (CBG, CBDV, THCV)
 - Genotypes (Epidiolex CBD)
 - Contamination
 - Stability (aged degraded samples)
 - Process Change
 - Counterfeit samples

Warning limit (95% confidence interval)

Failure limit (99% confidence interval)

Fundamental Design Point... Models must satisfy the Goldilocks criteria Not too sensitive, not insensitive but "just right" Build expected variation into the models

Proposed Non-Cannabinoid Specifications (US)

Test	CBD BDS
Total Terpenes	2.8 – 5.4% w/w
Beta-Myrcene	NMT 0.7% w/w
Trans-Caryophyllene	0.7 – 1.7% w/w
Alpha-Caryophyllene	0.2 - 0.5% w/w
Trans-Nerolidol	0.1 – 0.4% w/w
Phytol	NMT 0.6% w/w
Total Sterols/Triterpenes/Vitamins	1.2-4.4% w/w
Squalene	NMT 0.4% w/w
Alpha-Tocopherol	0.1 – 0.7% w/w
Beta-Sitosterol	0.2 – 1.0% w/w
Total Carotenoids	NMT 0.5% w/w
Trans-Beta-Carotene	NMT 0.3% w/w
Total Triglycerides	2.0 – 8.5% w/w
LnLnL	NMT 1.5% w/w
Total Fatty Acids	0.8 – 1.7% w/w
Total Polar Fraction	0.5 – 1.3% w/w

- Representative compounds from specific compound classes plus class totals
- Impossible to get standards for all compounds content determined using representative peaks
- Possible to simplify by showing linear relationship between subset of compounds
 and total

Semi-synthetics (Isolates)

- Much simpler than complex botanicals but principles similar
- Understand fate/purge of compounds through processing
- Characterise what remains in the isolate cannabinoids and non-cannabinoids
- Contaminants e.g. elemental impurities also tracked through the process
 - Risk assessments performed (ICH Q3D)
 - Confirmed absence in API by analysis of commercial batches
 - Same concept applied to residual solvents, aflatoxins, micro etc

Compound	% purged	
beta-Myrcene	100.0	
trans-Caryophyllene	100.0	Heavy Meta
trans-Nerolidol	100.0	2
Phytol	100.0	
Squalene	100.0	
LLL	99.5	
РРР	100.0	t 0.8
Stigmasterol	100.0	to 0.6 0.4
alpha-Tocopherol	99.8	0.2
Nonacosane	100.0	Compost Milled
Total Alkanes	99.8	
Palmitic Acid	89.8	
beta-Carotene	100.0	

Elemental Impurities in Isolate

						ts (mcg/kg)	ı/kg)			Permitted		
Element	ICH Q3D Class		Reporting Limit (mcg/kg)*	800299030	800300060	800300070	6066919	6066920	6067091	Permitted Oral Conc. (mcg/kg)**	Parenteral Conc. (mcg/kg)**	Pass
Cadmium	Cd	1	10	ND	ND	ND	ND	ND	0.32	500	200	Yes
Lead	Pb	1	10	5.75	2.90	5.90	29.65	4.65	5.45	500	500	Yes
Arsenic	As	1	10	23.50	14.50	12.10	4.80	6.45	3.38	1500	1500	Yes
Mercury	Hg	1	10	0.54	0.25	1.35	ND	0.01	ND	3000	300	Yes
Cobalt	Со	2A	100	ND	ND	ND	ND	ND	ND	5000	500	Yes
Vanadium	V	2A	100	ND	ND	0.08	0.46	0.01	1.13	10000	1000	Yes
Nickel	Ni	2A	100	40.00	70.50	10.60	1.98	28.95	20.50	20000	2000	Yes
Thallium	ΤI	2B	100	ND	ND	ND	ND	ND	ND	800	800	Yes
Gold	Au	2B	10	2.35	1.60	1.75	2.05	1.32	0.60	10000	10000	Yes
Palladium	Pd	2B	100	0.33	0.21	ND	ND	ND	ND	10000	1000	Yes
Iridium	Ir	2B	100	1.05	0.70	0.53	0.60	0.47	0.52	10000	1000	Yes
Osmium	Os	2B	100	1.50	1.07	1.45	1.21	0.73	1.09	10000	1000	Yes
Rhodium	Rh	2B	100	0.15	ND	ND	ND	ND	ND	10000	1000	Yes
Ruthenium	Ru	2B	100	ND	ND	ND	0.05	0.11	0.11	10000	1000	Yes
Selenium	Se	2B	100	ND	1.91	2.75	0.65	1.40	2.05	15000	8000	Yes
Silver	Ag	2B	100	1.52	0.45	0.47	2.66	1.38	0.81	15000	1000	Yes
Platinum	Pt	2B	100	0.02	0.23	ND	0.12	0.11	0.17	10000	1000	Yes
Lithium	Li	3	100	1.90	1.30	2.81	1.40	1.20	1.75	55000	25000	Yes
Antimony	Sb	3	100	0.72	1.10	0.75	2.10	0.95	3.10	120000	9000	Yes
Barium	Ва	3	100	7.00	0.60	ND	0.43	1.25	0.75	140000	70000	Yes
Molybdenum	Мо	3	100	ND	15.50	ND	101.70	60.00	3.00	300000	150000	Yes
Copper	Cu	3	100	19.90	25.50	46.50	259.00	22.00	58.00	300000	30000	Yes
Tin	Sn	3	100	73.50	8.00	135.50	21.50	134.50	8.25	600000	60000	Yes
Chromium	Cr	3	100	36.00	28.00	39.50	16.95	44.00	37.50	1100000	110000	Yes

13

Synthetic CBD

- Epidiolex is botanically derived
 - Has an impurity* profile indicative of plant origins (e.g. CBD homologues)
- Proposed USP monograph for botanically derived CBD has controls around synthetic intermediates
 - Limitations there are multiple synthetic routes to CBD
 - Methods need to be developed to detect them all
 - New routes could be developed with different intermediates
- Batch data from a decade of production of CBD API
 - CBDV and CBD-C4 always present
 - always between a range of values that can be defined by 3xsd around the mean
- If presence of CBDV, CBD-C4 is required to confirm botanical origin
 - No need to test for synthetic intermediates
- Does anyone produce CBD isolate by a method that removes all other cannabinoids?

14

Final Considerations for Botanically Derived Cannabis Drugs

- Three main elements for drug products
 - Quality, Safety, Efficacy

 - But for any product aimed at people with a medical condition, Quality and Safety should be fundamental.
- Structural Alerts
 - - Toxicology risk assessment required
 - For Sativex we screened over 100 compounds through both packages
- Understand your product
 - - Know the concentration ranges for those components from genotype to genotype, batch to batch, season to season, year to year, facility to facility etc
 - Know what affects levels in your manufacturing process
 - Know what the stability is of those components over the likely storage times for API and/or in-use times for product
 - Know if there is interaction with excipients in finished products
 - Are there extractables and leachables concerns with packaging?
 - Use the guidelines for impurities (USP/Ph.Eur/ICH)
 - Risk assess you process, and test appropriately based on those assessments

- Clinical Trials are expensive – efficacy can be difficult to demonstrate, patients often have an expectation of success based on anecdotal evidence

- Identified components above specific thresholds as defined in ICH Q3A should be evaluated by structural alerts software e.g. DEREK for Windows, Leadscope

- If you claim full or broad spectrum and want to make favorable claims about the entourage effect, about terpenes or flavonoids then you need to...

15

Thank You

