PHARMACOPOEIAL DISCUSSION GROUP

CODE: E-64 NAME: ISOMALT

CORRECTION 1

Harmonized Attributes

Attribute	EP	JP	USP
Definition	+	+	+ 1
Identification	+	+	+
Conductivity	+	+	+
Reducing sugars	+	+	+
Related substances	+	+	+
Nickel	+	+	+
Water	+	+	+
Assay	+	+	+
Labelling	+	+	+

Legend

+ will adopt and implement; - will not stipulate

Non-harmonized attributes

Description (incl. test for optical rotation)/Characters, Heavy metals, Packaging and storage

Local requirements

EP	JP	USP
Identification (TLC, colour	Identification (colour reaction);	Identification by TLC; assay
reaction)	Heavy metals	(RSD NMT 2.0%)

Reagents and reference materials

Each pharmacopoeia will adapt the text to take account of local reference materials and reagent specifications.

Date:

Signatures:

Nov. 29, 2016.

European Pharmacopoeia

Japanese Pharmacopoeia United States Pharmacopeia

Haruhiyo OKuda

for Masamobu Tamada

E-64 ISOMALT

2

1

3

5

6 $C_{12}H_{24}O_{11}$

 $M_{\rm r}$ 344.3

 $7 C_{12}H_{24}O_{11}, 2H_2O$

 $M_{\rm r}$ 380.3

8

- 9 DEFINITION
- 10 Mixture of 6-O-α-D-glucopyranosyl-D-glucitol (6-O-α-D-glucopyranosyl-D-sorbitol; 1,6-
- GPS) and 1-O-α-D-glucopyranosyl-D-mannitol (1,1-GPM).
- 12 Content: 98.0 per cent to 102.0 per cent for the mixture of 1,6-GPS and 1,1-GPM and neither
- of the 2 components is less than 3.0 per cent (anhydrous substance).
- 14 IDENTIFICATION
- 15 Liquid chromatography
- 16 Examine the chromatograms obtained in the assay.
- 17 Results: the 2 principal peaks in the chromatogram obtained with the test solution are similar
- in retention time to the 2 principal peaks in the chromatogram obtained with reference
- 19 solution (a).
- 20 TESTS
- 21 Conductivity: maximum 20 μS·cm⁻¹.

0.4.

- 1 Dissolve with gentle heating (40-50 °C) 20.0 g in carbon dioxide-free water, cool and dilute
- 2 to 100.0 mL with the same solvent. Measure the conductivity of the solution while gently
- 3 stirring with a magnetic stirrer.
- 4 **Reducing sugars**: maximum 0.3 per cent (expressed as glucose).
- 5 Dissolve 3.3 g in 10 mL of water with the aid of gentle heat. Cool and add 20 mL of cupri-
- 6 citric solution and a few glass beads. Heat so that the boiling begins after 4 min and maintain
- boiling for 3 min. Cool rapidly and add 100 mL of a 2.4 per cent V/V solution of glacial acetic
- 8 acid and 20.0 mL of 0.025 M iodine. With continuous shaking, add 25 mL of a mixture of
- 9 6 volumes of hydrochloric acid and 94 volumes of water. When the precipitate has dissolved,
- 10 titrate the excess of iodine with 0.05 M sodium thiosulfate using 1 mL of starch solution as
- indicator, added towards the end of the titration. Not less than 12.8 mL of 0.05 M sodium
- *thiosulfate* is required.
- 13 Related substances. Liquid chromatography.
- 14 Test solution. Dissolve 0.200 g of the substance to be examined in 4 mL of water and dilute to
- 15 10.0 mL with the same solvent.
- 16 Reference solution (a). Dissolve 0.200 g of isomalt CRS in 4 mL of water and dilute to
- 17 10.0 mL with the same solvent.
- 18 Reference solution (b). Dissolve 10.0 mg of sorbitol CRS (impurity C) and 10.0 mg of
- 19 mannitol CRS (impurity B) in 20 mL of water R and dilute to 100.0 mL with the same
- 20 solvent.
- 21 Precolumn:
- 22 size: l = 30 mm, $\emptyset = 4.6$ mm;
- 23 stationary phase: strong cation-exchange resin (calcium form) (9 μm);
- 24 temperature: 80 ± 3 °C.
- 25 Column:
- 26 *size*: l = 300 mm, Ø = 7.8 mm;
- 27 stationary phase: strong cation-exchange resin (calcium form) (9 µm)¹;
- 28 temperature: 80 ± 3 °C.
- 29 Mobile phase: degassed water.
- 30 Flow rate: 0.5 mL/min.

CXS QH.

¹ (Information for the PDG only. Not to be published in the regional monograph)
Aminex® HPX-87C (Bio Rad), Repro-Gel® (Dr. Maisch), Nucleogel® Sugar 810 Ca (Macherey-Nagel),
Rezex® RCM Monosaccharide Ca2+ (Phenomenex®) are suitable.

CP : EP October 2016 Corr. 1 Stage 5B

- 1 Detection: differential refractometer maintained at a constant temperature (40 °C for
- 2 example).
- 3 *Injection*: 20 μL.
- 4 Run time: 2.5 times the retention time of 1.1-GPM.
- 5 Relative retention with reference to 1,1-GPM (retention time = about 12 min): 1,6-
- 6 GPS = about 1.2; impurity B = about 1.6; impurity C = about 2.0.
- 7 System suitability: reference solution (a)
- 8 resolution: minimum 2.0 between the peaks due to 1,1-GPM and 1,6 GPS.
- 9 *Limits*:
- 10 impurities B, C: for each impurity, not more than the area of the corresponding peak in the
- chromatogram obtained with reference solution (b) (0.5 per cent);
- 12 any other impurity: for each impurity, not more than the area of the peak due to
- impurity C in the chromatogram obtained with reference solution (b) (0.5 per cent);
- total: not more than 4 times the area of the peak due to impurity C in the chromatogram
- obtained with reference solution (b) (2.0 per cent);
- disregard limit: 0.2 times the area of the peak due to impurity C in the chromatogram
- obtained with reference solution (b) (0.1 per cent).
- 18 Nickel: maximum 1 ppm.
- 19 Determine the nickel by atomic absorption spectrometry standard additions.
- 20 Test solution. Dissolve an amount of the substance to be examined corresponding to 10.0 g of
- 21 anhydrous substance in 30 ml of dilute acetic acid (115 g/l to 125 g/l of C₂H₄O₂) and dilute to
- 22 100.0 ml with water. Add 2.0 ml of a solution of ammonium pyrrolidinedithiocarbamate
- 23 (C₅H₁₂N₂S₂) at about 10g/l and 10.0 ml of water-saturated methyl isobutyl ketone and then
- shake for 30 s protected from bright light. Allow the layers to separate and use the methyl
- 25 isobutyl ketone layer.
- 26 Reference solutions. Prepare 3 reference solutions in the same manner as the test solution but
- adding 0.5 ml, 1.0 ml and 1.5 ml respectively of nickel standard solution (10 ppm Ni) in
- addition to the 10.0 g of the substance to be examined.
- 29 Blank. Prepare the blank in the same manner as the test solution, but omitting the substance to
- 30 be examined.
- 31 Set the zero of the instrument using the blank. Measure the absorbance at 232.0 nm using a
- 32 nickel hollow-cathode lamp as source of radiation and an air-acetylene flame. Between each
- measurement, rinse with water and ascertain that the readings return to zero with the blank.
- 34 Water: maximum 7.0 per cent.

ONS

3

- 1 Determined on 0.3 g by semi-micro-determination. Use as solvent, a mixture of 20 mL of
- 2 anhydrous methanol and 20 mL of anhydrous formamide at 50 ± 5 °C.
- 3 ASSAY
- 4 Liquid chromatography as described in the test for related substances with the following
- 5 modification.
- 6 *Injection*: test solution and reference solution (a).
- 7 Calculate the percentage content of isomalt (1,1-GPM and 1,6-GPS) from the declared
- 8 contents of 1,1-GPM and 1,6-GPS in isomalt CRS.
- 9 LABELLING
- 10 The label states the percentage contents of 1,6-GPS and of 1,1-GPM.
- 11 IMPURITIES

12

13 14

B. D-mannitol,

15

16 C. D-glucitol (D-sorbitol),

17

18

19 REAGENTS

- 20 Cation exchange resin (calcium form), strong.
- 21 Resin in calcium form with sulfonic acid groups attached to a polymer lattice consisting of
- 22 polystyrene cross-linked with 8 per cent of divinylbenzene. The particle size is specified after
- 23 the name of the reagent in the tests where it is used.

- 1 Cupri-citric solution.
- 2 Dissolve 25 g of copper sulfate (CuSO₄,5H₂O), 50 g of citric acid and 144 g of anhydrous
- 3 sodium carbonate (Na₂CO₃)in water and dilute to 1000 mL with the same solvent.
- 4 Hydrochloric acid, dilute.
- 5 Contains 73 g/L of HCl. Dilute 20 g of hydrochloric acid to 100 mL with water.
- 6 0.5 M Iodine.
- 7 Dissolve 127 g of iodine and 200 g of potassium iodide in water and dilute to 1000.0 mL
- 8 with the same solvent.
- 9 Methyl isobutyl ketone, water saturated.
- 10 Shake *methyl isobutyl ketone* (C₆H₁₂O, 4-methyl-2-pentanone) with water prior to use.
- 11 Nickel standard solution (10 ppm Ni).
- 12 Immediately before use, dilute with water to 100 times its volume a solution containing nickel
- sulfate equivalent to 4.78 g of NiSO₄,7H₂O in 1000.0 mL.
- 14 0.1 M Sodium thiosulfate.
- Dissolve 25 g of sodium thiosulfate and 0.2 g of sodium carbonate in carbon dioxide-free
- water and dilute to 1000.0 mL with the same solvent.
- 17 Starch solution.
- 18 Triturate 1.0 g of soluble starch with 5 mL of water and whilst stirring pour the mixture into
- 19 100 mL of boiling water R containing 10 mg of mercuric iodide (HgI₂).
- 20 Water, carbon dioxide-free.
- 21 Water which has been boiled for a few minutes and protected from the atmosphere during
- 22 cooling and storage.

23

- 24 Anhydrous formamide. Complies with the requirements prescribed for formamide with the
- 25 following additional requirement.
- Water: maximum 0.1 per cent determined with an equal volume of anhydrous methanol.

27

OHI