Endotoxin testing of an exhaustive list of different autochthonous and common water contaminating Microorganisms – an LAL and rFC comparative study

USP Open Forum on Alternatives to Compendial Reagents used in the Bacterial Endotoxin Test

Dr. Christian Faderl, Project Coordinator Endotoxin Services

Kevin Williams, Senior Scientist

November 15th, 2021
AGENDA

• LAL and rFC Comparative Study 1
 Typical water contaminating microorganisms
 - tested with two LAL assays and one rFC assay -

• LAL and rFC Comparative Study 2
 Autochthonous facility isolates
 - tested with three kinetic LAL, two turbidimetric LAL, and two rFC assays -

• Potential impact of β-glucans and other microbial sugars on LAL-rFC comparison studies
LAL AND RFC COMPARATIVE STUDY 1
TYPICAL WATER CONTAMINATING MICROORGANISMS
METHOD

Goal:
Internal evaluation of comparability of rFC and LAL assays on non-purified LPS, including typical water contaminating bacterial strains.

Materials:
- Assays: 2 LAL (KCA 1, KCA 2), and 1 rFC
- Samples: 24 different strains of typical water contaminating microorganisms (Gram Negative Bacteria).
- Media: M9 and LB. Not all organisms grew in both media (→ 41 final samples)

<table>
<thead>
<tr>
<th>Strain</th>
<th>Strain #</th>
<th>Strain</th>
<th>Strain #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas stutzeri</td>
<td>S329</td>
<td>Enterobacter sakazakii</td>
<td>S2752</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>S2947</td>
<td>Enterobacter sakazakii</td>
<td>S2753</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>S613</td>
<td>Klebsiella pneumoniae ssp. pneumoniae</td>
<td>S207</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>S205</td>
<td>Escherichia coli O113:H10</td>
<td>S3222</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>S1582</td>
<td>Citrobacter sp.</td>
<td>S354</td>
</tr>
<tr>
<td>Enterobacter sakazakii</td>
<td>S2713</td>
<td>Proteus mirabilis</td>
<td>S1581</td>
</tr>
<tr>
<td>Enterobacter sakazakii</td>
<td>S2326</td>
<td>Escherichia coli</td>
<td>S396</td>
</tr>
<tr>
<td>Klebsiella pneumoniae ssp. pneumoniae</td>
<td>S206</td>
<td>Escherichia coli</td>
<td>S55</td>
</tr>
<tr>
<td>Yersinia enterocolitica</td>
<td>S2945</td>
<td>Escherichia coli</td>
<td>S162</td>
</tr>
<tr>
<td>Serratia marcescens</td>
<td>S2946</td>
<td>Escherichia coli</td>
<td>S78</td>
</tr>
<tr>
<td>Salmonella enterica ssp. salamae</td>
<td>S379</td>
<td>Escherichia coli O55:B5</td>
<td>S1268</td>
</tr>
<tr>
<td>Vibrio natriegens</td>
<td>S407</td>
<td>Escherichia coli</td>
<td>S498</td>
</tr>
</tbody>
</table>
NOTES AND CONTROLS

Growth media used in the study:

LB: NaCl, yeast extract, tryptone, agar, WEF

M9: glucose 10%, MgSO₄, salt solution, WEF

Salt Solution: Na₂HPO₄ x 2 H₂O, KH₂PO₄, NaCl, NH₄Cl, WEF

Control of the media:

<table>
<thead>
<tr>
<th>Media</th>
<th>Dilution</th>
<th>rFC</th>
<th>KCA 1</th>
<th>KCA 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Measured value [EU/mL]</td>
<td>Endotoxin activity in the media [EU/mL] *</td>
<td>PPC</td>
<td>Measured value [EU/mL]</td>
</tr>
<tr>
<td>LB</td>
<td>1:10</td>
<td>< 0.005</td>
<td>< 0.05</td>
<td>87%</td>
</tr>
<tr>
<td>M9</td>
<td>1:10</td>
<td>< 0.005</td>
<td>< 0.05</td>
<td>108%</td>
</tr>
</tbody>
</table>

WEF: water endotoxin free; * Measured value multiplied with dilution factor
STUDY SETUP

Sample measurements

- Serial dilution were prepared in endotoxin free water (1:1000 up to 1:1,000,000)
- Four different dilutions of each sample were analyzed
- All measurements were performed at the same day using same dilutions for all assays
- LAL and rFC assays were performed according to manufacturers instructions
- The experiments were performed at bioMérieux R&D laboratory:
RESULT ANALYSIS

• To standardize the results, the average of the results of the 2 LAL assays was taken as 100% and the individual results compared to this average.
RESULTS 1

Recovery calculated to the LAL average

- Enterobacter aerogenes
- Enterobacter cloacae
- Enterobacter sakazakii (S2713)
- Enterobacter sakazakii (S2326)
- Enterobacter sakazakii (S2752)
- Enterobacter sakazakii (S2753)

- KCA 1
- KCA 2
- rFC

The graph shows the recovery calculated to the LAL average for different strains of Enterobacter. The highest recovery is 325% for Enterobacter sakazakii (S2753).
RESULTS 2

Recovery calculated to the LAL average

- Pseudomonas stutzeri
- Serratia marcescens (S2946)
- Serratia marcescens (S2947)
- Yersinia enterocolitica (S613)
- Yersinia enterocolitica (S2945)
- Salmonella enterica ssp. salamae

Legend:
- KCA 1
- KCA 2
- rFC
RESULTS 3

<table>
<thead>
<tr>
<th>Recovery calculated to the LAL average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vibrio natriegens</td>
</tr>
<tr>
<td>Citrobacter sp.</td>
</tr>
<tr>
<td>Proteus mirabilis</td>
</tr>
<tr>
<td>Klebsiella pneumoniae ssp. Pneumoniae (S206)</td>
</tr>
<tr>
<td>Klebsiella pneumoniae ssp. Pneumoniae (S207)</td>
</tr>
</tbody>
</table>

- LB
- M9
- KCA 1
- KCA 2
- rFC
RESULTS 4

Recovery calculated to the LAL average

<table>
<thead>
<tr>
<th></th>
<th>KCA 1</th>
<th>KCA 2</th>
<th>FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escherichia coli O113:H10</td>
<td>LB</td>
<td>M9</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli O55:B5</td>
<td>LB</td>
<td>M9</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (S396)</td>
<td>LB</td>
<td>M9</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (S55)</td>
<td>LB</td>
<td>M9</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (S162)</td>
<td>LB</td>
<td>M9</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (S78)</td>
<td>LB</td>
<td>M9</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli (S498)</td>
<td>LB</td>
<td>M9</td>
<td></td>
</tr>
</tbody>
</table>
SUMMARY

- rFC results are comparable with LAL when quantifying endotoxin from different gram negative bacteria growing under different environmental conditions.

- Comparison of the individual measured results with the average of the specific sample results measured with LAL assays:

<table>
<thead>
<tr>
<th>Total sample number = 41</th>
<th>KCA 1</th>
<th>KCA 2</th>
<th>rFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>50% < n < 200%</td>
<td>41</td>
<td>38</td>
<td>36</td>
</tr>
<tr>
<td>n < 50%</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>n > 200%</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>concordant results regarding the average LAL results</td>
<td>100%</td>
<td>92.7%</td>
<td>87.8%</td>
</tr>
</tbody>
</table>

- For this data analysis the results of the LAL assays are defined as the “gold standard”. The results of the rFC assay matches in 87.8% with the results of the LAL assays.

- Even with this small test setup, the compendial methods show not always alignment in the results (92.7% for KCA 2).
LAL AND RFC COMPARATIVE STUDY 2
AUTOCHTHONOUS FACILITY ISOLATES
COMPARATIVE STUDY 2

Goal

To test if the variabilities of growth of autochthonous gram negative microorganisms and their endotoxin affects the ability of different BET methods to detect or quantitate them. It should be shown if rFC is comparable to LAL in quantification of endotoxin.

Materials

• Assays: 2 rFC, 5 LAL (3 Chromo, 2 Turbid), and 1 rLAL
• Samples: 7 different Autochthonous Gram Negative Organisms that were discovered during routine Bioburden testing in Pharmaceutical Facilities
• Media: up to four different growth media to simulate the GNB growing and adapting in low and high nutrients environments (→ 15 final samples). LB, M9, R2A, salt solution
STUDY SETUP

• The different facility isolates were added in BIOBALL format (550 CFU) to the different media.

• After ~ 5 days the samples were passed through 0.2 micron filters to remove any gram negative bacteria (GNB). The endotoxin was left in its natural state as it occurs in the environment (autochthonous).

• Samples were tested and diluted in endotoxin free water to approximately <1 EU/mL (using LAL)

• Samples were then tested using all different assays on two different days.
 Day 1: 4 LAL, 1 rLAL and 1 rFC assay
 Day 2: 1 LAL and 1 rFC assay

• LAL and rFC assays were performed according to manufacturers instructions and the results were all valid (PPC and CV).

• The experiments were performed at an independent 3rd party laboratory.
NOTES AND CONTROLS

- Control experiments of the pure media:

<table>
<thead>
<tr>
<th>Media</th>
<th>dilution</th>
<th>rFC</th>
<th>rFC</th>
<th>KCA 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB</td>
<td>1:10</td>
<td>< 0.005</td>
<td>< 0.05</td>
<td>87%</td>
</tr>
<tr>
<td>M9</td>
<td>1:10</td>
<td>< 0.005</td>
<td>< 0.05</td>
<td>108%</td>
</tr>
<tr>
<td>R2A</td>
<td>1:100</td>
<td>< 0.005</td>
<td>< 0.5</td>
<td>98%</td>
</tr>
<tr>
<td>salt</td>
<td>1:100</td>
<td>< 0.005</td>
<td>< 0.5</td>
<td>102%</td>
</tr>
</tbody>
</table>

* Measured value multiplied with dilution factor

- All results had acceptable PPC and CV values. The samples were tested with the same dilution except for one KTA, for which some samples needed higher dilutions (1:2 to 1:10).

- Not all microorganisms grew in all media
RESULT ANALYSIS

- To standardize the results, the average of the results of the 5 LAL assays was taken as 100% and the individual results compared to this average.
RESULTS 2

Pseudomonas stutzeri
Ralstonia insidiosa
Stenotrophomonas maltophilia

B I O M É R I E U X
RFC & LAL COMPARABILITY WITH AUTOCHTHONOUS ENDOTOXIN

- Achromobacter xylosoxidans
- Acinetobacter johnsonii
- Methylobacterium fujisawaense
- Moraxella osloensis
- Pseudomonas stutzeri
- Ralstonia insidiosa
- Stenotrophomonas maltophilia

LAL Mean rFC Mean
CONCLUSIONS

- rFC results are comparable with LAL when quantifying autochthonous endotoxin from GNB that have been discovered in pharmaceutical environments.

- Stressing the microorganisms and endotoxin in nutrient rich and nutrient poor environments has no effect on the detection or quantification of endotoxin.

- rFC and LAL use the same endotoxin detection enzyme (Factor C) and are comparable when detecting and quantifying endotoxin.

<table>
<thead>
<tr>
<th></th>
<th>LAL</th>
<th>rFC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall test number</td>
<td>75</td>
<td>30</td>
</tr>
<tr>
<td>50% < n < 200%</td>
<td>63</td>
<td>28</td>
</tr>
<tr>
<td>n < 50%</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>n > 200%</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>concordant results regarding the average LAL results</td>
<td>84.0%</td>
<td>93.3%</td>
</tr>
</tbody>
</table>

The rLAL is not included in this analysis. The results of the LAL measurements are defined as the “gold standard”.
Potential impact of β-glucans and other microbial sugars on LAL-rFC comparison studies

Kevin Williams, Senior Scientist, bioMerieux November 15th, 2021
GLUCANS: ARE UBIQUITOUS IN NATURE (FUNGI/PLANTS/ETC.)

And Consist of wildly diverse structures!

Background: Look at structures and some membrane types they occur in

Data generated: Try and answer 3 basic questions around chrome vs turb β-glucan reactivity and utility of the beta glucan blocking buffer.

- Plants /grass
- Fungi
- Yeast
- Algae
- Lichen
- Cellulosic (wood)
- Some bacteria (Agrobacterium)
- Seaweed
BETA GLUCANS – MONOMERS > POLYMERS

D-Glucose

Alpha glucose and beta glucose ring structure

Bacterial Fungi / yeast
(\textit{agrobacterium})
Linear no branches

Cereals / lichens
Linear 1>3 or 1>4
No branches

Seaweed (\textit{Laminaria})
Fungi / yeast
1>3 backbone with 1>6 branches
MORE COMPLEXITY/UBIQUITY THAN COMMONLY ACKNOWLEDGED

Candida albicans Aspergillus fumigatus Cryptococcus neoformans

common in soil

GENERIC

Mannans

β glucans

Chitin

Phospholipid bilayer

yeast

Growth state

β-1,6-glucan
β-1,3-glucan
Chitin

Protein

Mannan

Mann (no outer chains)

Melanin

Rodlet

GAG

Galactomannan

GalXM

GXM

Capsule

α-1,3-glucan

a Candida yeasts b Pneumocystis spp. c Aspergillus conidium d Aspergillus fumigatus hyphae e Cryptococcus yeast f Histoplasma capsulatum and Blastomyces dermatitidis

Mannans

β glucans

Chitin

Phospholipid bilayer
SO NATURE IS NOT SO SIMPLE

Things to “worry about” if you are using non-filtered water for LAL and rfc comparisons.

1. Do chrome and turb LAL methods give the same result in the presence of \(\beta \)-glucans?

2. Can we really block all \(\beta \)-glucans by just using a blocking buffer?

3. Are there other microbial sugars that react with LAL?
ARE ALL GLUCANS BLOCKED WITH GB BUFFER?

- Initial test makes rFC look low
- Treatment with BGBB brings LAL results down a little
- But enzymatic treatment brings LAL values down more
- Repeated tests on 2 different natural water sources produced near identical results.

Study from last year
STUDIES FROM THIS YEAR

• Many fungi and yeast have prototypical β (1>3) D glucans, many do not

• LAL-RM from cellulosic filters are (1>4) β glucans – not included here

• Plant mannans have β(1-4) linkages. They are a form of storage polysaccharide.

• Yeast mannans have α(1-6) linked backbones and α(1-2) and α(1-3) linked branches. It is serologically similar to structures found on mammalian glycoproteins.

• Looked at mannan because some old LAL references mention its LAL reactivity. Not a beta glucan.
Q1. WHAT ABOUT CHROME VS TURB REACTIVITY?

If “gold standard” result then they should be equal

Chrome much higher ≠ Turb much higher

1 mg/mL of each sugar dissolved in purified water, heated 70C (oven) for 1 hr. and vortexed for 30 min. Diluted 1:100 or 1:1000. Sample sugars were of the highest purity available and labeled <1 EU/mL as tested by human TLR4-expressing HEK 293 cells and as tested negative for endotoxin with rFC.
Q2. ARE ALL GLUCANS BLOCKED WITH GB BUFFER?
Q3. WHAT ABOUT NON CONVENTIONAL MICROBIAL SUGARS?

Curdlan - as advertised but only with chrome. Other sugars have significant residual activity.

Blocking buffer does very little to counter mannan LAL activity.
THE HISTORICAL SUCCESS OF LAL IS BUILT UPON...

• The presumption that purified water and other manufacturing process
 constituents are clean of non-endotoxin pyrogens and other reactants (β-
 glucans)

• β-glucans and other contaminants are excluded during process validation

• Only Gram negative bacteria can “spring up” quickly in purified water

• All LAL tests give basically the same answer (presumption challenged by
 this data when β-glucans are present)

• There is no β-glucan standard in the LAL test and therefore it can only
 “interfere” with a true endotoxin result

• rFC continues the basic pharma LAL paradigm
ANY QUESTIONS?

Thank you for your attention!

For questions and/or support, please contact
christian.faderl@biomerieux.com
kevin.williams@biomerieux.com

Acknowledgement
Dr. Susanne Ude
Dr. Holger Grallert
Melanie Lang
Monika Lindner
Julia Egen
Brendan Tindall
Dr. Megha Bajaj
PIONEERING DIAGNOSTICS