

Light scattering solutions for multi-attribute quantification of mRNA-lipid nanoparticle therapeutics

Martin Kurnik Application Scientist II

Light scattering techniques for RNA and LNP multi-attribute quantification (MAQ)

Static Light Scattering (a.k.a. multi-angle light scattering, MALS)

- ✓ Molar mass, MW
- ✓ RMS radius or radius of gyration, $R_{\rm g}$

Dynamic Light Scattering (DLS)

- \checkmark Translational diffusion coefficient, $D_{\rm t}$
 - Hydrodynamic radius, R_h

Waters WYATT

Wyatt solutions for quantifying RNA and LNP attributes Waters | @ WYATT

For RNA, RNP or LNPs when FFF is not available, as LNPs may be caught by or interact with the SEC columns

FFF – Multi-Detector (MD)

Ideal tool for separating and characterizing RNA, LNP, LNP-RNA, and many other bioNPs

ZetaStar: Developability and formulation

- Six parameters in a single, simple workflow
- Small sample volumes
- Fast analysis
- Automation with HPLC pump and autosampler
- GMP compliance

DLS: NanoStar and Plate Reader

Off-shelf well plates

Plate Reader: Measure DLS and SLS *in situ* in standard microtiter plates

- 96, 384, and 1536 standard well plates
- No cross-contamination
- Automated analyses
- High-throughput
- Ideal to study trends and screen conditions
- Automated with liquid handling robot

NanoStar™: Simultaneous SLS and DLS analysis in quartz or disposable cuvettes

- Extremely low sample volume: 2 μ L or 4 μ L
- Rapid, walk-up measurements for untrained users

Characterizing size and particle concentration of LNPs

Determine size, polydispersity and size distribution of empty and mRNA-loaded LNPs

• Empty LNP exhibit noticeable broad distribution

Waters WYAT

- mRNA-LNP median is clearly larger (~ 45 nm)
- Particle concentration is quickly determined
 - ~1×10¹⁰ particles/mL

Characterizing charge / zeta potential of LNPs

ELS determines charge / zeta potential of LNPs, which is intrinsically related to the ability to enter specific organs and cells and deliver its payload effectively and where needed.

- All samples are negatively charged under test conditions
- Process conditions seem to have no or little influence on LNP surface charge
- Measurements can be performed under physiological conditions

ZetaStar provides rapid answers for scientists to make faster and more informed decisions to improves LNP size consistency

mRNA-LNP Physical attributes and assays

Attribute	Assay	SEC/FFF-MALS-UV-dRI	
mRNA integrity	Gel, qPCR	\checkmark	
LNP size	DLS	\checkmark	
LNP distribution	DLS	\checkmark	
Physical stability	DLS	\checkmark	
LNP number concentration	NTA	\checkmark	
LNP morphology	TEM, cryo-EM	$\checkmark (R_{\rm g}/R_{\rm h})$	
LNP charge	PALS	Possibly with EAF4	
Encapsulation efficiency	Fluorescence	✓ new	
mRNA concentration	Fluorescence	✓ new	
Lipid concentration	LC-MS	✓ new	

MALS-DLS-UV-dRI following SEC or FFF

SEC or FFF provides size-based separation

SEC

FFF: the separation tool of choice for LNPs and samples that stick to columns and are sensitive to shearing.

FFF (AF4)

Optimal system configuration for LNP-MAQ

Waters | WYATT

Support to ensure your success

LNP Analysis Module and Guidance Manual in ASTRA™ 8.1+.

Online Resources & Technical Notes : https://www.wyatt.com/support

Data review with the Wyatt Analytical Sciences team

What can we help you with?

My Support Requests

Registration is free for all Wyatt Users

(805) 681-9009 option 4
<u>support@wyatt.com</u>

SEC or FFF to separate mRNA

Waters |

time (min)

	M _w [kDa]	Agg [%]	R _g [nm]	R _h [nm]	R _g /R _h
EPO	272 ± 1	4.8	15 ± 1	12 ± 1	1.2 ± 0.1
fLuc	622 ± 1	2.6	20 ± 1	17 ± 1	1.2± 0.1

Molar Mass (g/mol)

- LNP is polydisperse with continuous size/MW distribution.
- FFF is preferred over SEC: LNP stability study, separation between free RNA and LNP-RNA, and sticky LNPs.

Measuring RNA integrity by SEC/FFF-MALS

©2024 Wyatt Technology, LLC

14

LNP size: average size and polydispersity

LNP size distribution

©2024 Wyatt Technology, LLC

Physical stability

Waters Waters

LNP morphology

Waters Waters

Encapsulation efficiency (EE)

Waters WYATT

Radius (nm)

EE=(C_{Total RNA}-C_{Free RNA})/C_{Total RNA}

LNP and nucleic acid concentration

Waters | & WYATT

LNP Analysis for measuring payload

©2024 Wyatt Technology, LLC

Example results from FFF-MALS LNP payload analysis Waters | @ WYATT

- The mRNA payload is not distributed equally across all particles
- Measure mRNA weight fraction or number as a function of particle size and concentration

Cross-verification (Merck[™]): LNP-siRNA by SEC-MALS-UV-dRI

Waters | So WYATT

X. Jia, et al, "Enabling online determination of the size-dependent RNA content of lipid nanoparticlebased RNA formulations", X. Jia, et al., *Journal of Chromatography B* 1186 (2021): 123015. https://doi.org/10.1016/j.jchromb.2021.123015

LNP-RNA, RNA wt% (online) LNP-RNA, RNA wt% (offline) empty LNP, RNA wt% (online)

Summary of LNP-MAQ

- SEC or FFF separates mRNA and mRNA-LNP with high resolution
- Online detectors (MALS, UV at 260 nm, and dRI) provide comprehensive characterization and multi-attribute quantitation
- The new LNP Analysis Module enables sizebased nucleic acid payload
- MD-SEC and MD-FFF are essential tools for measuring mRNA and LNP size, concentration, payload, and product quality
- Software packages are 21 CFR 11 compliant
- MD-SEC and MD-FFF are automated, robust, easy to adopt, less prone to experimental errors, and require minimal hands-on time

Waters WYATT

SEC/FFF-MALS for LNP-MAQ

References

www.wyatt.com/LNP

- DLS Plate Reader: "Polysarcosine-functionalized lipid nanoparticles for therapeutic mRNA delivery", Nogueira, S.S et al., ACS Appl. Nano Mat. 3(11), 10634-10645 (2020). <u>https://doi.org/10.1021/acsanm.0c01834</u>
- SEC-MALS: "Polydispersity characterization of lipid nanoparticles for siRNA delivery using multiple detection size-exclusion chromatography", Zhang, J. et al., Anal. Chem. 84(14), 6088-6096 (2012). https://doi.org/10.1021/ac3007768

- FFF-MALS: "Improved multidetector asymmetrical-flow field-flow fractionation method for particle sizing and concentration measurements of lipid-based nanocarriers for RNA delivery", Mildner, R., et al., *Euro. J. Pharm. Biopharm.* 163 (2021): 252-265. https://doi.org/10.1016/j.eipb.2021.03.004
- *FFF-MALS:* "Physical characterization of liposomal drug formulations using multi-detector asymmetrical flow field flow fractionation", Parot, J. et al. *J. Cont. Rel.* 320, 495-510 (2020). <u>https://doi.org/10.1016/j.jconrel.2020.01.049</u>
- Size-based payload distribution: "Enabling online determination of the size-dependent RNA content of lipid nanoparticle-based RNA formulations", X. Jia, et al., Journal of Chromatography B 1186 (2021): 123015. https://doi.org/10.1016/j.jchromb.2021.123015