CMC Regulatory Experiences and Expectations for Peptides

Katharine Duncan, Ph.D.
Senior Pharmaceutical Quality Assessor
Division of Pharmaceutical Quality Assessment XVIII, Office of Pharmaceutical Quality Assessment III, Office of Pharmaceutical Quality (OPQ), Center for Drug Evaluation and Research (CDER), Food and Drug Administration (FDA)
Disclaimer

This presentation reflects the views of the author and should not be considered to represent the FDA’s views or policies.
Everyone deserves confidence in their next dose of medicine.

Pharmaceutical quality assures the availability, safety, and efficacy of every dose.
Peptide Therapeutics

- Peptides make up approximately 9% (31/370) of the new drugs approved by the FDA between 2016‒2023\(^{(1)}\)
- The global peptide therapeutics market was estimated at $43.45 billion in 2023\(^{(2)}\)

Trofinetide
Approved March 2023
Administration: Oral

Zilucoplan
Approved October 2023
Administration: Subcutaneous

\(^{(1)}\) “2023 FDA TIDES (Peptides and Oligonucleotides) Harvest” Pharmaceuticals, 2024: doi: 10.3390/ph17020243
\(^{(2)}\) Peptide Therapeutics Market Size and Share [2023 Report].
What is a Peptide?

Protein defined in the FDA Final Rule “Definition of the Term ‘Biological Product’” (85 FR 10057 March 23, 2020):

“the term *protein* would mean any alpha amino acid polymer with a specific defined sequence that is *greater than 40 amino acids in size*…”

Peptide: any polymer composed of 40 or fewer amino acids
Elements of a Control Strategy

- **Characterization**
 - Manufacturing process controls
 - Starting materials
 - Reaction conditions
 - Process impurities
 - Higher order structure
 - Amino acid sequence

- **Specification**
 - Identity
 - Assay
 - Purity

- **Quality of the peptide drug**
 - Degradation impurities
 - Stability

Elements of a Control Strategy

Characterization
- Starting materials
- Reaction conditions
- Process impurities
- Higher order structure
- Amino acid sequence

Manufacturing process controls

Specification
- Identity
- Assay
- Purity

Stability

Quality of the peptide drug

Peptide Manufacturing Approaches

• Recombinant DNA technology
• Extraction from natural sources, including fermentation products
• Chemical synthesis

Current Protein and Peptide Science 2013, 14, 556-567. DOI: 10.2174/1389203711314990071
Biologically-Derived Peptides

• Examples: Glucagon, calcitonin, cyclosporin A (fermentation product)

• Starting materials: Cell banks
 • Master cell banks
 • Working cell banks

• Process impurities can include host cell proteins, host cell DNA, media residue, processing reagents, etc.

• Refer to ICH Q5A, Q5B, and Q5D for regulatory considerations

Cyclosporin A: Fermentation product from Tolypocladium inflatum (aerobic fungi)
Synthetically-Derived Peptides: Solid-Phase Peptide Synthesis

• Chemistry developed in the 1960s
• Most common approach
• Process-related impurities may include residual solvents, reagents, and elemental impurities

Polymers 2014, 6, 515-551. DOI: 10.3390/polym6020515
Synthetically-Derived Peptides: Liquid-Phase Peptide Synthesis

• Less common approach
• Works well for smaller peptides
• Typically slower than SPPS
Synthetically-Derived Peptides: Hybrid SPPS/LPPS Process

- Shorter peptide fragments manufactured through SPPS
- Fragments coupled in the liquid phase
Synthetically-Derived Peptides: Starting Materials

• Starting materials may include:
 – Protected amino acids
 – Solid supports (resins)
 – Any covalently linked moiety (e.g., lipid, fatty acid, polyethylene glycol)
Synthetically-Derived Peptides: Protected Amino Acid Starting Materials

- Protected amino acid specifications may include tests for
 - Identification
 - Purity
 - Related substance impurities (e.g., partially unprotected amino acids, β-alanine impurities, dipeptides)
 - Chiral purity (enantiomer content)
 - Assay
Synthetically-Derived Peptides: Starting Materials with Additional Considerations

• Additional information (e.g., synthesis information, characterization, chromatographic behavior) may be needed for:
 • D-amino acids
 • Non-proteinogenic amino acids
 • Custom-synthesized moieties for conjugation

• Refer to USP chapter <1504> Quality Attributes of Starting Materials for the Chemical Synthesis of Therapeutic Peptides
Manufacturing Process Considerations

• Follow ICH Q7: Good Manufacturing Practice Guidance for Active Pharmaceutical Ingredients.

• Recommendations for regulatory submissions
 – Describe the manufacturing process
 • Operating ranges for relevant process parameters
 • Reaction times, quantities, conditions, purification processes
 – Describe changes to synthesis/process through development
 – Consider meeting with the Agency to discuss regulatory starting materials
Elements of a Control Strategy

Manufacturing process controls
- Starting materials
- Reaction conditions
- Process impurities

Higher order structure
- Amino acid sequence

Speciation
- Identity
- Assay
- Purity

Degradation impurities

Quality of the peptide drug

Characterization

Characterization: Standard Tests

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sequence/Structure confirmation</td>
<td>MS, MS/MS, NMR, Amino acid analysis (AAA), Peptide mapping</td>
</tr>
<tr>
<td>Enantiomeric purity</td>
<td>Chiral AAA</td>
</tr>
<tr>
<td>Counter ion identity/content</td>
<td>RP-HPLC, ion chromatography</td>
</tr>
</tbody>
</table>
Characterization: Additional Considerations

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Analytical Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Higher order structure</td>
<td>Circular dichroism, FT-IR, NMR</td>
</tr>
<tr>
<td>Oligomers/ Aggregation</td>
<td>Size Exclusion Chromatography (SEC), Dynamic Light Scattering, Gel electrophoresis</td>
</tr>
<tr>
<td>Biological Activity</td>
<td>Cell-based and other biological assays</td>
</tr>
</tbody>
</table>
Characterization: Risk of Immunogenicity

• Depends on the source, sequence, size, route of administration, and mechanism of action of the drug substance.

• Refer to FDA guidance “Immunogenicity assessment of therapeutic protein products” (Final 2015): principles apply to peptides
Impurities

Characterization

Manufacturing process controls
- Starting materials
- Reaction conditions
- Process impurities

Specification
- Identity
- Assay
- Purity

Quality of the peptide drug

Higher order structure
- Amino acid sequence

Stability

Degradation impurities

Types of Impurities

- Resolution of impurities may be challenging
 - Consider using orthogonal methods
 - Methods should be appropriately validated
Impurity Thresholds

<table>
<thead>
<tr>
<th></th>
<th>ICH Q3A (1) (MDD ≤ 2 g)</th>
<th>Ph.Eur.2034: Limits for Synthetic Peptides</th>
<th>Certain Generic Peptides(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting Threshold</td>
<td>0.05%</td>
<td>0.1%</td>
<td>N/A</td>
</tr>
<tr>
<td>Identification Threshold</td>
<td>0.10% (or 1.0 mg/day)</td>
<td>0.5%</td>
<td>0.10%</td>
</tr>
<tr>
<td>Qualification Threshold</td>
<td>0.15% (or 1.0 mg/day)</td>
<td>1.0%</td>
<td>0.5%</td>
</tr>
</tbody>
</table>

(1) Specifically excludes peptides
Impurity Controls

• Proposed reporting, identification, and qualification thresholds for impurities are evaluated on a case-by-case basis

• Considerations:
 – Principles of ICH Q3A(R2) and ICH Q3B(R2)
 – Provided batch data and stability data
 – Provided toxicology data
Elements of a Control Strategy

- Manufacturing process controls
 - Starting materials
 - Reaction conditions
 - Process impurities

- Characterization
 - Higher order structure
 - Amino acid sequence

- Specification
 - Identity
 - Assay
 - Purity

- Stability
 - Degradation impurities

- Quality of the peptide drug

Representative Specification

<table>
<thead>
<tr>
<th>Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
</tr>
<tr>
<td>Solubility</td>
</tr>
<tr>
<td>Identification</td>
</tr>
<tr>
<td>Assay (of total mass) - HPLC</td>
</tr>
<tr>
<td>Assay (anhydrous and counter ion free substance) - Calculation</td>
</tr>
<tr>
<td>Purity</td>
</tr>
<tr>
<td>Related substance impurities</td>
</tr>
<tr>
<td>Residual solvents</td>
</tr>
<tr>
<td>Elemental impurities</td>
</tr>
<tr>
<td>Water content</td>
</tr>
<tr>
<td>Counter ion content</td>
</tr>
<tr>
<td>Bacterial endotoxins</td>
</tr>
<tr>
<td>Microbial limits</td>
</tr>
</tbody>
</table>

Refer to USP chapter <1503> Quality Attributes of Synthetic Peptide Drug Substances
of closely related structure which are likely to be present. Identity tests should be specific for
the new drug substance, e.g., infrared spectroscopy. Identification solely by a single
chromatographic retention time, for example, is not regarded as being specific. However, the
use of two chromatographic procedures, where the separation is based on different principles,
or combination of tests into a single procedure, such as HPLC/UV diode array, HPLC/MS, or
GC/MS, is generally acceptable.

• Generally, a combination of methods is used for peptide identification testing:
 – Mass (MS)
 – RRT (HPLC)
 – AAA
 – NMR
 – LC-MS/MS
 – Peptide mapping
In summary, the new drug substance specification should include, where applicable, the following list of impurities:

Organic Impurities
- Each specified identified impurity
- Each specified unidentified impurity
- Any unspecified impurity with an acceptance criterion of not more than (≤) the identification threshold
- Total impurities

Residual Solvents

Inorganic Impurities
Specification: Assay Test

• A specific stability-indicating test that can determine the content of the new drug substance
 – A weight-based assay against a reference standard of known purity
 – Calculation of mass balance (purity, water, counter ion)
• Bioassay/potency typically not required for peptides
 – For complex peptide APIs, justification for the omission of a bioassay may be requested
 – Provide available bioassay data obtained during development and higher order structure characterization data
Elements of a Control Strategy

- Manufacturing process controls
 - Starting materials
 - Reaction conditions
 - Process impurities

- Characterization
 - Higher order structure
 - Amino acid sequence

- Specification
 - Identity
 - Assay
 - Purity

- Quality of the peptide drug
 - Degradation impurities

Stability Studies

• Stability studies should be in line with ICH Q1 guidelines

• Per ICH Q1E, no extrapolation allowed for drug substances to be stored at -20 °C

• Recommend performing forced degradation studies to elucidate degradation pathways and identify major degradants
Conclusions

- Provide increasing information as development proceeds to ensure the **identity**, **strength**, **quality**, and **purity** of the peptide drug.

- Reach out to the **Agency** for guidance on CMC-related topics early and throughout development.

Guidances

For the most recent version of a guidance, check the FDA Drugs guidance webpage at: https://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm

- Development and manufacture of DS: ICH Q11
- cGMP: ICH Q7
- Setting specifications: ICH Q6A
- Impurities: ICH Q3A-D
- Stability: ICH Q1A-E
- FDA Salt Policy: "Naming of Drug Products Containing Salt Drug Substances Guidance for Industry"
- MAPP 5017.2 Rev. 1: Establishing Impurity Acceptance Criteria as Part of Specifications for NDAs, ANDAs, and BLAs Based on Clinical Relevance
- For peptides from biological sources: ICH Q5A, Q5B, Q5D, and Q6B
Acknowledgements

• Katherine Windsor, Senior Pharmaceutical Quality Assessor, Division XIX, OPQAI, OPQ

• Donna Christner, Supervisory Chemist, Division XVIII, OPQAI, OPQ

• Paresma Patel, Division Director, Division XIX, OPQAI, OPQ