mRNA and CircRNA Integrity Analysis for Biopharmaceutical Development

Challenges and Opportunities

Frank Zuo

Vaccine Analytical Research & Development (VARD) Merck & Co., Inc., West Point, PA, USA <u>Feb. 28, 2024</u>

□ Integrity Analysis of mRNA drug substance and drug product

- □ Practical challenges for mono-valent mRNA vaccines
- □ Challenges for multi-valent mRNA vaccines
- □ Challenges for circular RNA samples

mRNA Integrity Measurement: CGE vs. IP-RPLC

Pros: Sound separation of IG Higher resolution at lower MW

Cons: Lower Throughput Lower repeatability

IP-RPLC for Purity Analysis: Quantitate Purity, Fragments and "IG" Peaks

- Elution order: nucleotide length of intact mRNA molecules, same as size-based separations (SEC, CGE)
- Separation mechanism: primarily based on hydrophobicity
- Lipidated mRNA has higher hydrophobicity than the intact mRNA counterparts

IP-RPLC: Shallow Gradient of Organic

- Column: DNAPac RP, Thermo Scientific
- System: Waters Acquity H Class Binary System
- MPA: 30/70 ACN/H₂O, 50 mM HAA MPB: 80/20 ACN/H₂O, 50 mM HAA
- Sample Temp: 5°C
- PDA: 260nm

Time (min)	Flow Rate (ml/min)	MPA	MPB
7	0.2	76	24
23	0.2	70	30

Shallow organic gradient: change of 3% ACN in 16min

Shifting Retention Times – Robustness of MP Composition

Change of Acetonitrile in MPB

Change of HAA

Resolution *vs.* **Robustness of MP Preparation**

	Name	47.5mM HAA	50mM HAA	52.5mM HAA	79%ACN	80%ACN	81%ACN
1	200 nt	N/A	N/A	N/A	N/A	N/A	N/A
2	500 nt	11.1	11.0	11.0	11.2	11.0	10.8
3	1000 nt	9.1	9.9	9.5	12.0	9.9	9.3
4	1500 nt	5.6	6.0	5.6	6.9	6.0	5.1
5	2000 nt	4.2	3.6	4.1	4.1	3.6	3.5
6	3000 nt	4.1	3.8	4.4	4.0	3.8	3.6
7	4000 nt	2.1	2.1	1.9	2.1	2.1	1.8
8	6000 nt	2.0	1.9	2.2	2.2	1.9	1.8

- Resolution profile is comparable at low range of ladders (<2k nt)
- Resolution profile at higher range (>2k) differs
- Resolution is higher at lower range than higher range

Retention Time Shifting – System Variability

Quaternary pump

Gradient Proportioning

Valve

	System Dwell Volume (µL)	Extension Loop (µL)	Total Dwell Volume (μL)
Binary Acquity H Class	75	0	75
Quaternary Acquity H Class	375	100	475

Challenge for Pentavalent Vaccine A on CGE: Split Peaks

Split Peaks for Pentavalent Vaccine B on IP-RPLC

V1	1.80k nt
V2	1.85k nt
V3	1.90k nt
V4	1.86k nt
V5	1.89k nt
Δ (nt)	100

Potential Solution: Decease Resolution to Merge Main Peaks

Main Peaks Merged with Shoulder

Comparison of IG Separation of the Two Methods

Comparability of Two Methods: DP Samples

	Base Method			Ма	dified Method		Δ (Modified - Base)		
Sample	%Main	%Fragment	%IG	%Main	%Fragment	%IG	%Main	%Fragment	%IG
v1 25C 14D	86.9	12.6	0.5	86.3	12.8	0.9	-0.6	0.2	0.4
v2 25C 14D	85.4	14.3	0.4	85.4	13.9	0.7	0.0	-0.4	0.3
v3 25C 14D	84.1	15.4	0.5	89.0	10.2	0.9	4.8	-5.2	0.4
v4 25C 14D	90.2	9.6	0.2	93.1	6.6	0.3	2.9	-3.0	0.1
v5 25C 14D	83.9	15.2	0.9	88.5	10.8	0.8	4.6	-4.4	-0.1
Calculated Average	86.1	13.4	0.5	88.4	10.9	0.7	2.3	-2.6	0.2
Measured Penta DP		N/A		88.5	10.8	0.7	2.4	-2.7	0.2

Inherent Separation Challenges for Circular RNA Integrity Analysis

- Separation of linear and circular components
- Separation of lipidated RNA component from intact circular component
- Separation of circular peak and concatemer peaks
- Stability of circular component on column

15

- Analytical challenges exist to establish IR-RPLC as the platform method for RNA integrity analysis
- Further evaluation of feasibility of IR-PRLC for circRNA is needed
- IP-RPLC method is a feasible method to analyze the fragments, main components and high molecular/hydrophobic components

Acknowledgements

Merck VARD at West Point PA

Yvonne Shieh

Nicholas Cunningham

Jessica Raffael

Richard Rustandi

Matt Schombs

Daniel DiStefano

