Analytical Approaches for Profiling Polyadenylation (PolyA) Tails in mRNA

Weicheng Zhang, Ph.D.

Principal Scientist, Analytical Development CATUG Biotechnology

February 29, 2024

Strategy for Profiling Poly A Tails in mRNA

- Gel electrophoresis
- Sequencing
- Capillary electrophoresis
- Liquid chromatography
- Liquid chromatography-mass spectrometry (LC-MS)

Poly A Test by Gel Electrophoresis

- Rnase H/Oligo(dT) assay
- PCR amplification based assays

Rapid amplification of cDNA ends poly(A) test (RACE-PAT)

Ligase-mediated poly(A) test (LM-PAT)

Extension poly(A) test (ePAT)

Splint-mediated poly(A) test (sPAT)

Example work flow of PAT by Gel electrophoresis

Copyright © Catug Biotechnology

CATUC 楷 拓 生 物

Example work flow of TAIL-Seq

Copyright © Catug Biotechnology

DOI: 10.1002/wrna.1737

Fluorescence signal intensity

transcript body a poly(A) tai

Poly A Test by Capillary electrophoresis

Copyright © Catug Biotechnology

DOI: 10.1126/science.1215704

CATUG

拓

生物

Poly A Test by Capillary electrophoresis

pd(A)40-60 Standard

Copyright © Catug Biotechnology

CATUC 楷 拓 生 物

Poly A Test by Capillary electrophoresis

- > Need synthetic poly(A) length markers;
- Single nucleotide resolution;
- Result comparable to LC-MS and Nanopore sequencing;
- Readily qualified as a release method.

56

DOI: 10.1016/j.jpba.2023.115692

70

Poly A Test by Liquid chromatography

- Anion exchange chromatography (AEX)
- Reverse phase chromatography (RP-LC)
- Size-exclusion chromatography (SEC)

生

Poly A Test by AEX

- > Good resolution for short poly A fragments.
- > Hard to achieve single nucleotide resolution for longer poly A fragments.

Copyright © Catug Biotechnology

DOI: 10.1016/j.jpba.2023.115692

Poly A Test by RP-LC

Analyte: polarity (hydrophobicity) Stationary phase: non-polar medium Mobile phase: aqueous solution of polar organic solvent

> Separate poly(A) fragments with other oligo fragments.

Poly A Test by RP-LC

Poly A Test by RP-LC-mRNA

生物

拓

Poly A Test by RP-LC-saRNA

-0.1 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.01110.5

FLuc saRNA (>5k nt)

1. Tailless mRNA 2. Tailed mRNA 3. Poly(A) 4. Guide Oligo

EGFP saRNA (>5k nt)

1. Tailless mRNA 2. Tailed mRNA 3. Poly(A) 4. Guide Oligo

1 2 Sample 3 4 SST

Sample

4

生 物 拓

> Mobile phases has no strong ionpairing reagents, such as TEA.

> Applicable to RNAs of various length.

Copyright © Catug Biotechnology

1

2

3

SST

Poly A Test by RP-LC vs IPRP-LC

no strong ion-pairing reagents

with strong ion-pairing reagents

Ion-pairing reagents reduce the separation between tailed and tailless mRNA

Doi:10.1021/acs.analchem.3c02552

Poly A Test by SEC

dA₅₋₁₅₀ separation with columns packed with different pore size sorbent

> Multiple poly(A) tail species coeluting as a single peak

Copyright © Catug Biotechnology

Doi:10.1021/acs.analchem.3c02552

12.0

12.0

Poly A Test by LCMS

Poly A Test by LCMS

— GXXX(AAAAAAAA...)_nXXXXG —

日に

Linearize pDNA with restriction enzyme that produces blunt or 5' overhanging ends can lead to additional 3' nucleotide sequence from the restriction site in mRNA synthesis.

#	Theoretical Sequence	Observed M.W.	Calculated M.W.	Signal Intensity	Signal Intensity (%)
1	XXXA ₉₈ XXXXGp	34854.7988	34856.3840	14093	0.3
2	XXXA ₉₉ XXXXGp	35184.0051	35185.3187	147209	3.2
3	XXXA ₁₀₀ XXXXGp	35513.2115	35514.6481	404918	8.8
4	XXXA ₁₀₁ XXXXGp	35842.4179	35843.7063	950296	20.7
5	XXXA ₁₀₂ XXXXGp	36171.6243	36172.9965	1186539	25.9
6	XXXA ₁₀₃ XXXXGp	36500.8307	36502.2800	823897	18.0
7	XXXA ₁₀₄ XXXXGp	36830.0371	36831.4211	563095	12.3
8	XXXA ₁₀₅ XXXXGp	37159.2435	37160.6101	256851	5.6
9	XXXA ₁₀₆ XXXXGp	37488.4496	37490.2906	104339	2.3
10	XXXA ₁₀₇ XXXXGp	37817.6560	37819.4584	63268	1.4
11	XXXA ₁₀₈ XXXXGp	38146.8623	38148.1425	69505	1.5
12	XXXA ₁₀₉ XXXXGp	34854.7988	34856.3840	14093	0.3

Copyright © Catug Biotechnology

Rnase T1 digestion results in a 2' or 3' phosphate on G.

 General mass difference between observed and calculated M.W. is around 1-2 Da

the molecular weight of the discarded phosphate can be observed

Poly A Test by LCMS

Copyright © Catug Biotechnology

IJC. 生 物 楷 拓

DOI:10.1038/s41598-023-36193-2

<mark>し</mark> 「「「」」 「」」 「」」

Thanks You! Q&A