

HOLISTIC CONTROL STRATEGY OF OLIGONUCLEOTIDES STARTING MATERIALS

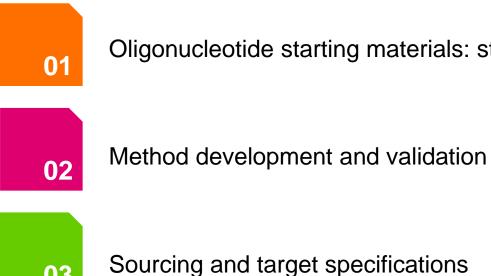
BACHE

Date Bubendorf Location Name

April 9, 2024 Dr. Martina Austeri

A LEADING SPECIALIST FOR DRUG SUBSTANCES

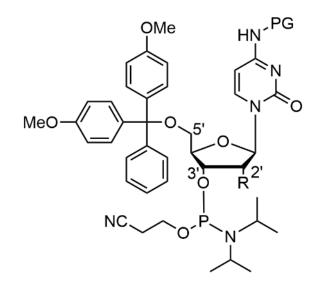
- Contract development and manufacturing organization (CDMO)
- Broad capabilities in Peptides and Oligonucleotides (TIDES) as active pharmaceutical ingredients (API)
- Long-term partnerships with pharmaceutical and biotech companies
- Focused on chemical synthesis, committed to innovation
- Annual sales of CHF 577.3 million in 2023 and over 2,000 colleagues globally
- Reliable supply of APIs for WHO essential medicines benefitting patients worldwide



High quality GMP manufacturing

AGENDA

Oligonucleotide starting materials: structure and impurities


03

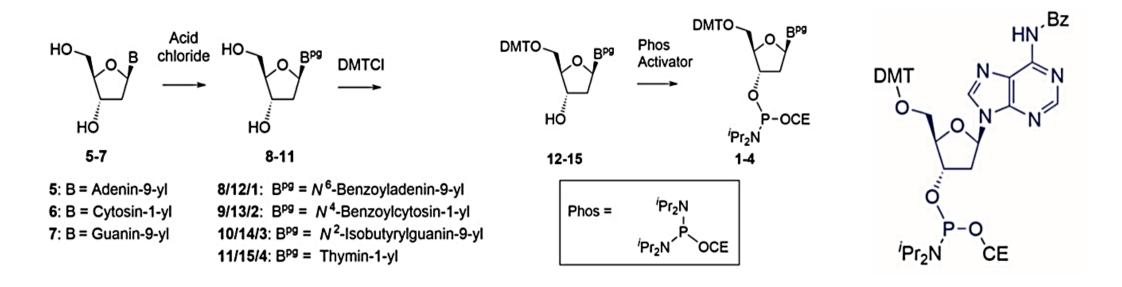
Sourcing and target specifications

BACHEM

PHOSPHORAMIDITES: STRUCTURE


- DMT-2'Fluoro-dA(Bz) phosphoramidite
- DMT-2'Fluoro-dC(Ac) phosphoramidite
- DMT-2'Fluoro-dG(lb) phosphoramidite
- DMT-2'Fluoro-dU phosphoramidite
- DMT-dA(Bz) phosphoramidite
- DMT-dC(Bz) phosphoramidite
- DMT-dG(lb) phosphoramidite
- DMT-dT phosphoramidite

- DMT-2'O-Methyl-rA(Bz) phosphoramidite
- DMT-2'O-Methyl-rC(Ac) phosphoramidite
- DMT-2'O-Methyl-rG(lb) phosphoramidite
- DMT-2'O-Methyl-rU phosphoramidite
- DMT-2'O-TBDMS-rA(Bz) phosphoramidite
- DMT-2'O-TBDMS-rC(Ac) phosphoramidite
- DMT-2'O-TBDMS-rG(lb) phosphoramidite
- DMT-2'O-TBDMS-rU phosphoramidite
- DMT-2'O-MOE-rA(Bz) phosphoramidite
- DMT-2'O-MOE-rMeC(Bz) phosphoramidite


BACHEN

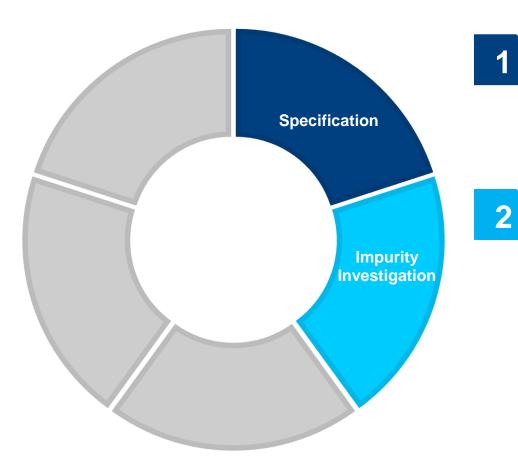
- DMT-2'O-MOE-rG(lb) phosphoramidite
- DMT-2'O-MOE-rMeU phosphoramidite

20 «standard» phosphoramidites

PHOSPHORAMIDITES: SYNTHESIS

Impurity profile depending on route of synthesis

General Synthesis Strategy published (Kiesmann, et al.; 2021)



PHOSPHORAMIDITES: SUPPLIER SPECIFICATION

Test	Method	
Appearance	Appearance of solid	White to off white powder
	Appearance of 0.1M solution	Report color and clarity of 0.1M solution in acetonitrile
Identity	Molecular Weight by MS	Theoretical Mass +/- 2 Da
	¹ H NMR	Conform to structure
Purity	³¹ P NMR	≥ 98%
	Trivalent Phosphorus (P(III)) impurities	≤ 0.5%
Purity	HPLC (area%)	Purity ≥ 98%
		Total impurities ≤ 2.0%
		Any single impurity ≤ 0.7%
Water content	KF coul.	≤ 0.2%
Residual organic solvents	GC	Determine and report

- Does the specification reflect the commercially available quality?
- Does it guarantee final API quality?

Common specification

Impurity investigation

Theoretical investigation based on manufacturing process Definition of critical impurities based on impact and occurrence LC-MS investigation of available batches

OLIGONUCLEOTIDE SYNTHESIS

Solid support is used for synthesis (preloaded resin)

- Step 1: The DMT group is removed with a solution of an acid (usually DCA dichloroacetic acid)
- Step 2: Coupling of the desired nucleotide (nucleoside phosphoramidite)
- Step 3: In the capping step unreacted solid phase bound 5'-OH groups are permanently blocked from further chain elongation to prevent the formation of oligonucleotides with an internal base deletion commonly referred to as (n-1) shortmers
- Step 4: Oxidation by iodine or thiolation of the tricoordinated phosphite ester into a phosphate ester.

PHOSPHORAMIDITES: IMPURITY INVESTIGATION

Impurity investigation

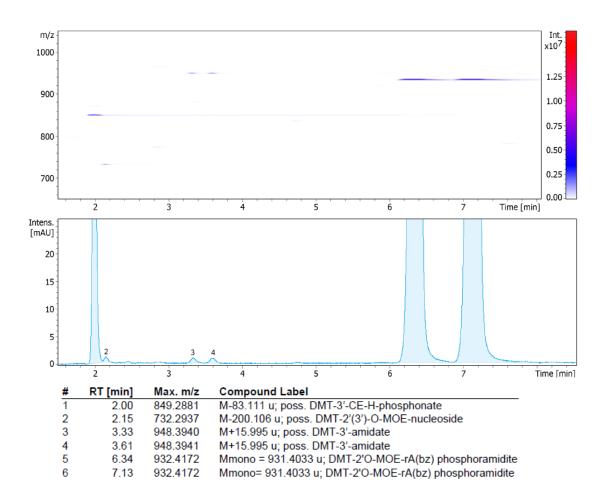
2

Theoretical investigation based on manufacturing process Definition of critical impurities based on impact and occurrence

Non-reactive and uncritical	Reactive and uncritical	Reactive and critical
Molecules without amidite	No impact on final	Amidite modifications
moiety	oligonucleotide quality	Base modification
Removed during synthesis/purification	Base protection group modifications	Stereo/regio isomers (Pos. 2'/3'/5')
Not incorporated in final oligonucleotide	5' Protecting group modification DMT	Modifications at the sugar moiety

MeO OMe HN^{PG} NC OP N

PHOSPHORAMIDITES: IMPURITY INVESTIGATION

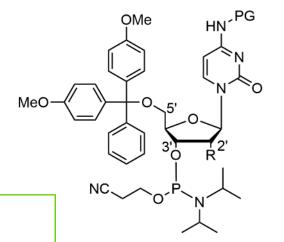

2

LC-MS impurity investigation

High number of batches from the 20 "standard" phosphoramidites analyzed and evaluated with current chromatographic method

Impurity identification approach:

- Mass difference
- Comparison with literature e.g Thermo technote
- High resolution MS-MS fragmentation

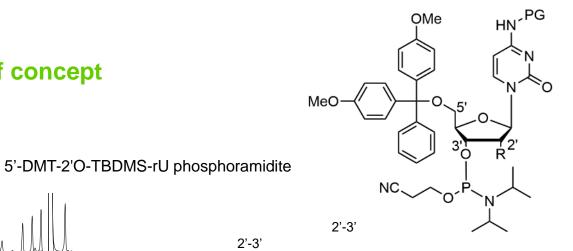


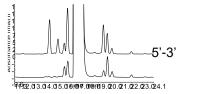
PHOSPHORAMIDITES: IMPURITY INVESTIGATION

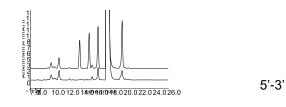
LC-MS impurity investigation: regular occurring impurities

- 1. DMT-3'-CE-H-phosphonate (M-83.110 u)
- 2. DMT-3'-amidate (M+15.995 u)
- 3. DMT-2'(3')-Fluoro/TBDMS/OMe-nucleoside (M-200.108 u) loss of phosphoramidite group
- 4. DMT-3'-H-phosphonoamidate (M-53.027 u)
- 5. 5',3'-Bis-DMT-nucleoside (M+102.023 u)
- 6. 5'-chlorinated-trityl-3'-amidite (M+33.961 u)
- DMT-3'-(N,N-amino-ethyl-isopropyl)-amidite (M-14.016 u)
- 8. Isomers (M+0 u) rarely

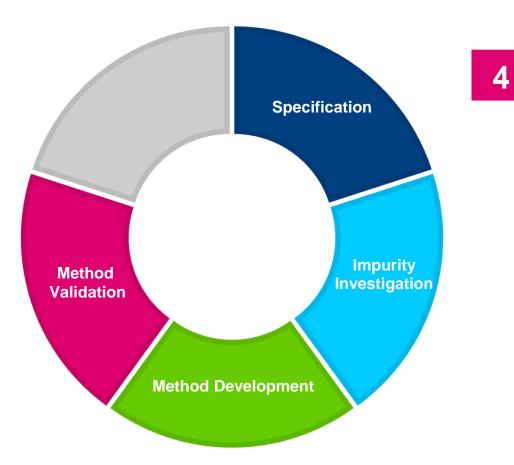
Method development


- Optimal parameter applicable for standard oligo startings (16 + 4)
- High sensitivity [LOQ $\leq 0.02\%$]
- Compatible with LC-MS
- No impurity below main peak [≥ 0.10%]
- Proof of concept with isomer spiking


PHOSPHORAMIDITES: LC METHOD DEVELOPMENT



DMT-2'O-TBDMS-rG(lb) phosphoramidite


2'-3'

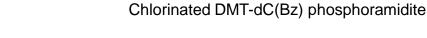
2'-3'

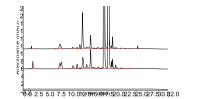
2'-3'

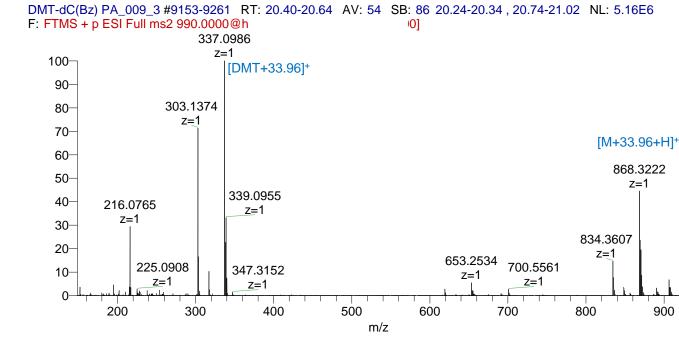
Method validation

- New concept according ICH Q2(R2) guidelines
 "Impurities or related substances are not available"
- Substance specific approach: specificity, LOQ, stability of solution
- With a model substance approach: linearity, accuracy by spiking, precision
- Identification of impurities by LC-MS and MS-MS
- Implementation of specific impurities into chromatographic data system

PHOSPHORAMIDITES: LC METHOD VALIDATION


4


Impurity identification by MS and MS-MS approach


Peak 13

 $MeO \longrightarrow OMe HN'^{PG} HN'^{PG}$

DMT-dC(Bz) phosphoramidite

Sourcing – supplier quality agreement

- Quality system requirements
- Right to audit

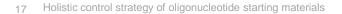
5

- Change control
- Data reporting maintenance record
- Deviation and investigations

Additional elements

- Key technical contacts
- Route of synthesis
- Material Specification
- Adequate measures in place to effectively control isomers impurities to max 0.15%

BACHEM


PHOSPHORAMIDITES: TOWARDS TARGET SPECIFICATION

Test	
Purity and related impurities (HPLC)	Purity ≥ 98%
	Total impurities ≤ 2.0%
	Any single impurity ≤ 0.7%
Purity and related impurities (³¹ P NMR)	Purity ≥ 98%
	Total P(III) impurities ≤ 0.5%

Test	
Purity and related impurities (HPLC)	Purity ≥ 99.0%
	Any critical impurity $\leq 0.15\%$
	Total critical impurities ≤ 0.30%
	Total uncritical impurities ≤ 1.0%
	Any unspecified impurity $\leq 0.15\%$
Purity and related impurities (³¹ P NMR)	Purity ≥ 98.0%
	Total P(III) impurities $\leq 0.30\%$
Residual organic solvents (GC)	Primary alcohols ≤ 100 mg/kg (each)

BACHEM

A HOLISTIC CONTROL STRATEGY REDUCES RISKS FOR PROJECTS AND CLIENTS

MITIGATION OF RISK THROUGH HIGH QUALITY

OF STARTINGS

ACKNOWLEDGMENTS

• QC team:

HPLC and MS: Pascal Heimer, Jérôme Kaeslin, Julia Hildesheim, Rahel Truffer, David Benda NMR: Patrik Plattner, Mario Schleep, Larissa Casper, Emmanouil Veroutis


Compliance: Stefan Neimeier

Oligonucleotide manufacturing:

Susanne Kruse, Adrian Sevenich, Henning Loui

• External supply QA:

Manuel Weber

THANK YOU

bachem.com

Bachem AG 4416 Bubendorf Switzerland

Tel +41 585 95 20 21

E-Mail sales.ch@bachem.com Bachem Americas, Inc. Torrance, CA 90505 USA

Tel +1 888 422 24 36

E-Mail sales.us@bachem.com

Bachem Japan K.K. Tokyo 103-0012 Japan

Tel +81 3 6661 0774

E-Mail sales.jp@bachem.com

O