BACHEM

ANALYTICAL TOOLBOX REQUIREMENTS

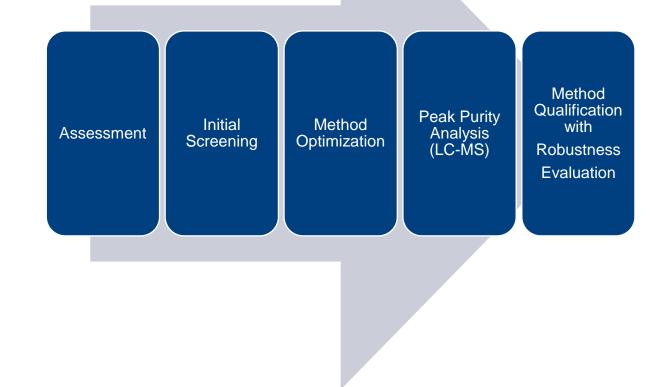
to enable the synthesis and release of large synthetic peptides

Date|April 9, 2024Location|USP WorkshopName|Tim Hellenbrand, PhD, Analytical Development

A LEADING SPECIALIST FOR DRUG SUBSTANCES

- Contract development and manufacturing organization (CDMO)
- Broad capabilities in Peptides and Oligonucleotides (TIDES) as active pharmaceutical ingredients (API)
- Long-term partnerships with pharmaceutical and biotech companies
- Focused on chemical synthesis, committed to innovation
- Annual sales of CHF 577.3 million in 2023 and over 2,000 colleagues globally
- Reliable supply of APIs for WHO essential medicines benefitting patients worldwide

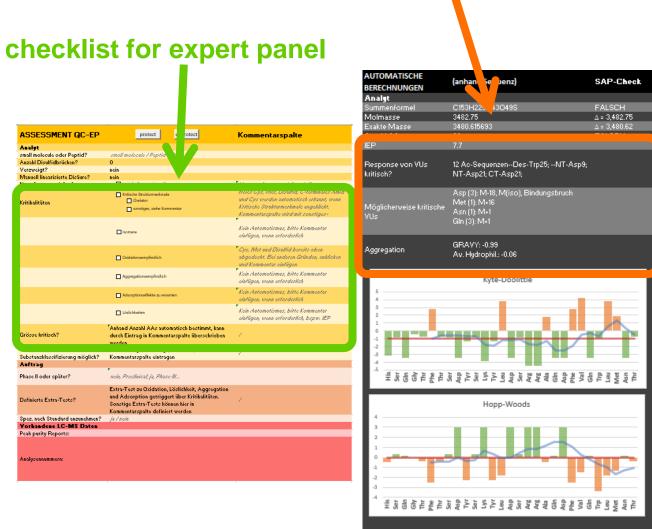
High quality GMP manufacturing



COMPLEX THERAPEUTIC PEPTIDES REQUIRE HIGHLY SELECTIVE PROCEDURES

- Critical quality attributes (CQAs):
- ➤ Purity
- Related impurities
- ➤ Assay
- Output:
- Identification of suitable procedure conditions
- Understanding effect of procedure parameters
- Initial analytical control strategy

Stage 1 (procedure design) of analytical life cycle <USP 1220>



physico-chemical properties

ASSESSMENT FOR SYSTEMATIC USE OF PRIOR KNOWLEDGE

- In-silico predictions of physicochemical properties based on peptide sequence
- Expert panel evaluation based on molecular structure, synthesis route etc.
- Predict impurities
- Oxidation/aggregation potential
- Additional tests for procedure development
- Structural similarities with other APIs

DE NOVO METHOD DEVELOPMENT HAS MULTIPLE KEY OBJECTIVES

Initial Screening Method Optimization

01

03

Selectivity/Resolution limiting co-eluting impurities 04

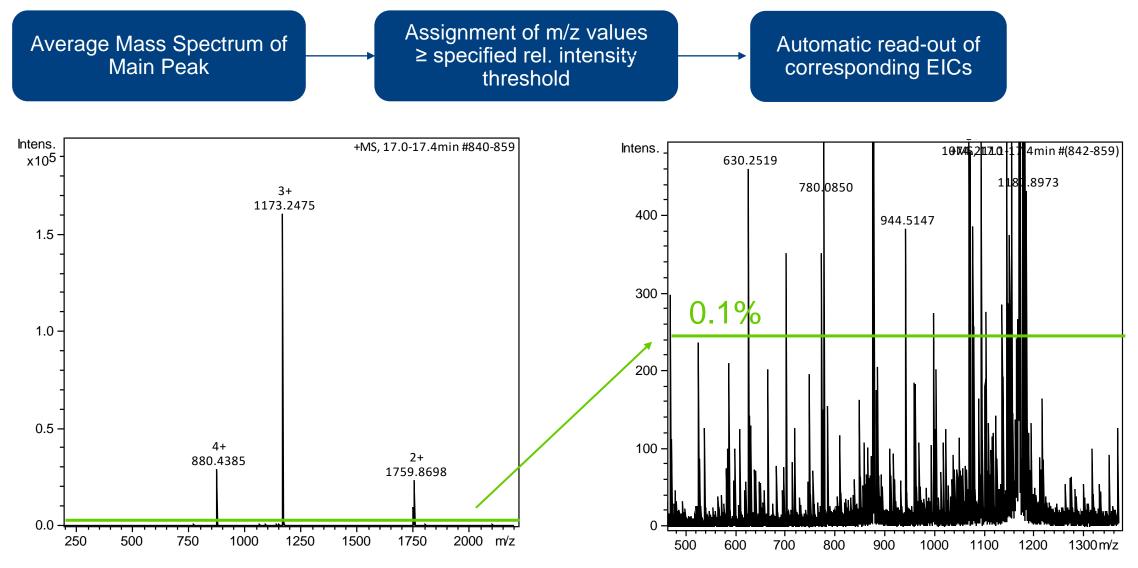
High-Resolution MS-compatibility choice and conc. additives

BACHEM

Sens S/N ≥

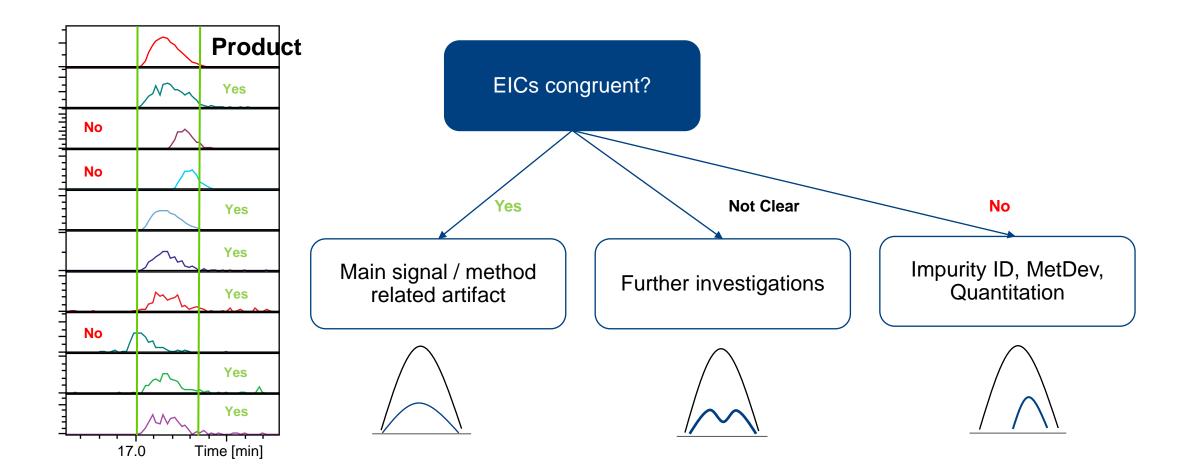
Sensitivity S/N ≥ 10 05 R

06


Robustness & Applicability Reproducibility over time

Stability indicating

detects related (degradation) impurities


State of the Art Transferable to other labs

PEAK PURITY (LC-MS) FOR CO-ELUTING IMPURITIES

BA	CH	IEM	

PEAK PURITY (LC-MS) FOR CO-ELUTING IMPURITIES

INITIAL REQUIREMENT PURITY AND RELATED IMPURITIES

Co-elution of impurities with each other summed UV peaks may exceed specified limits ⇒ unfavorable

Co-elution of impurities with main peak

Impurity may exceed specified limit without detection!

⇒ unfavorable

A

Identification of impurities

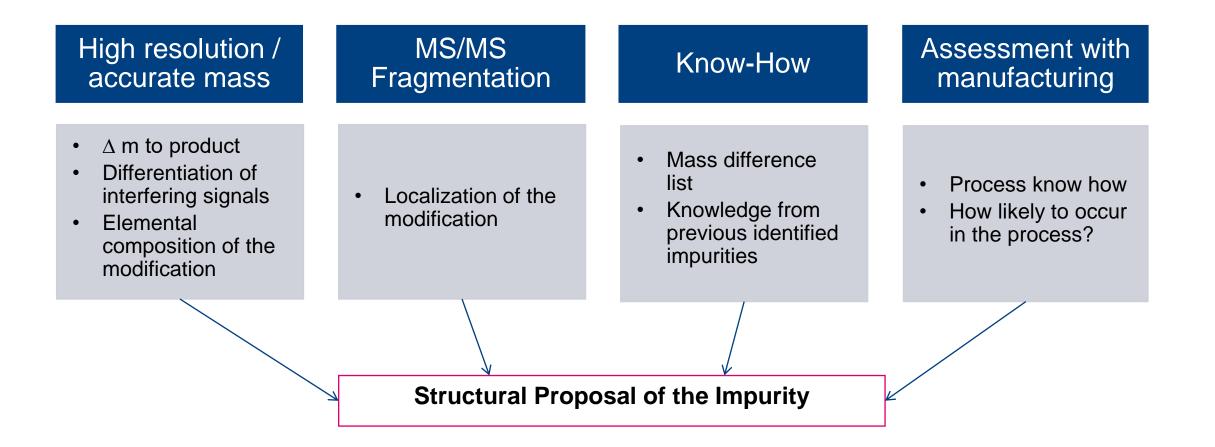
Identity might explain origin and stability behaviour

⇒ important

EP-Monograph 2034 "Substances for Pharmaceutical Use"

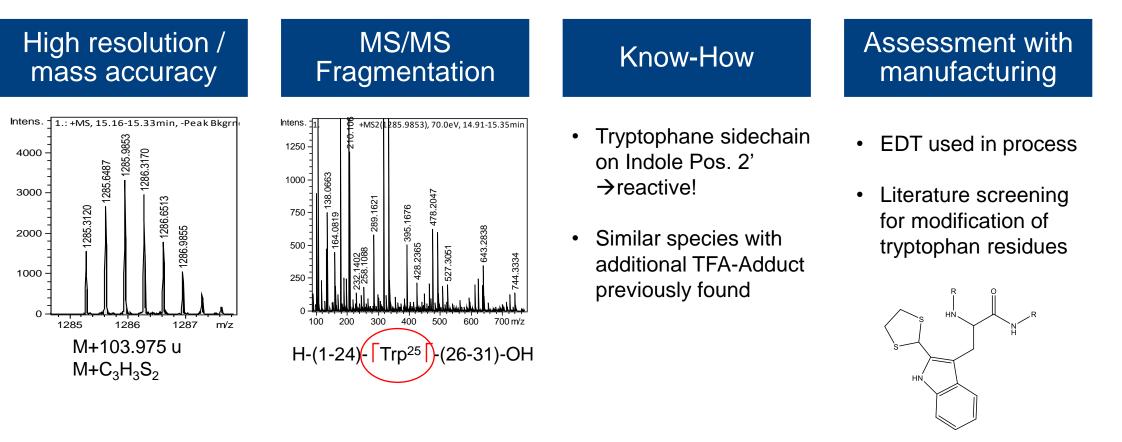
Table 2034.-2. – Reporting, identification and qualification of organic impurities in peptides obtained by chemical synthesis

Reporting	Identification	Qualification
threshold	threshold	threshold
> 0.1 per cent	> 0.5 per cent	> 1.0 per cent


Purity: >95% (target)

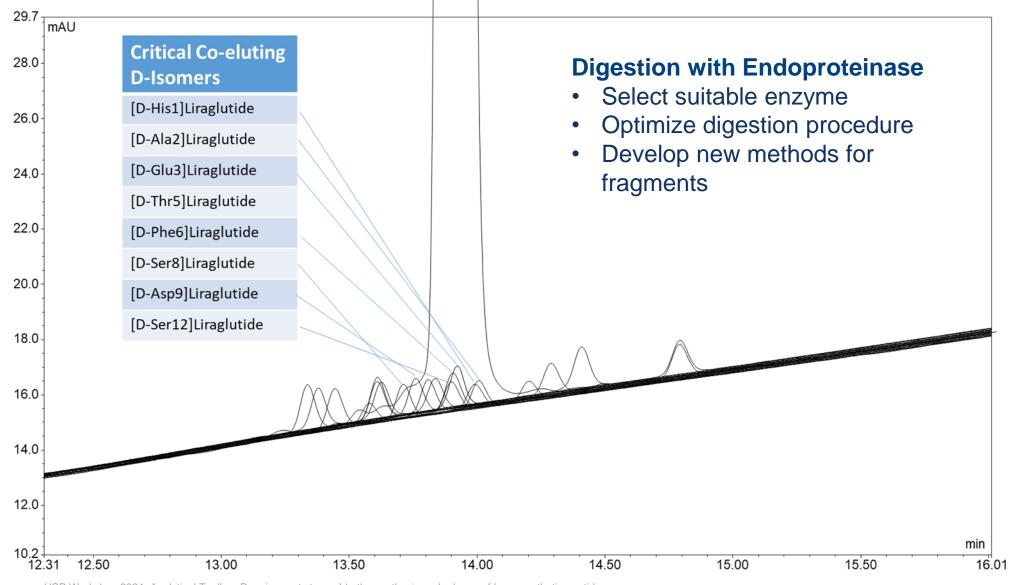
Related Impurities:

- Specification for all impurities that may occur above 0.5%
- General limit for non-specified impurities < 0.5%
- Synthesis of impurity references

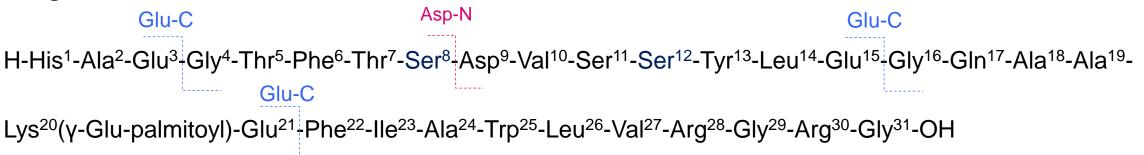


IDENTIFICATION BY LC-MS/MS – PROCEDURAL APPROACH

IDENTIFICATION BY LC-MS/MS EXAMPLE OF UNKNOWN IMPURITY M+104



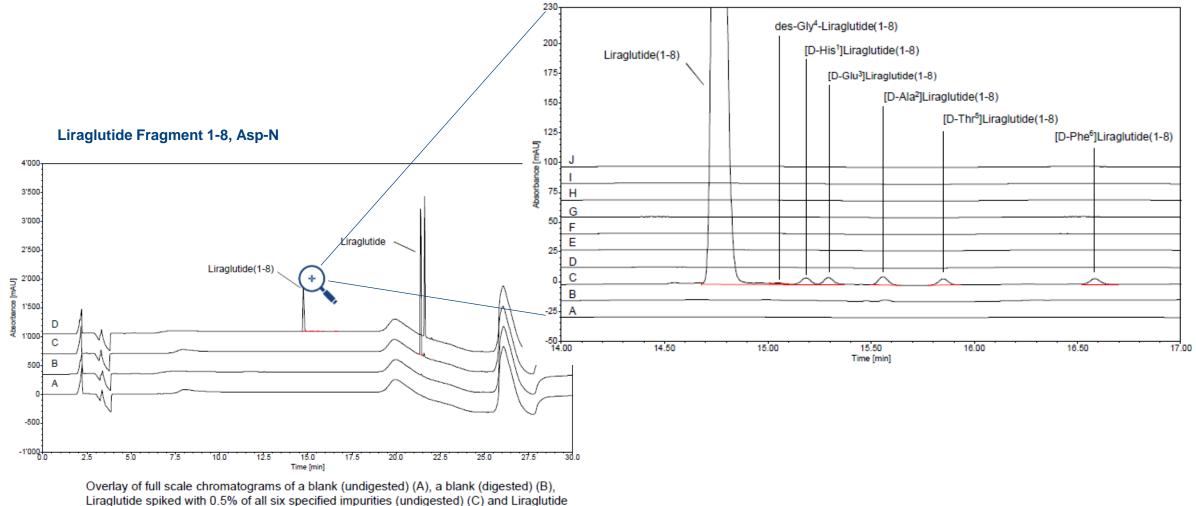
[2-(1,3-Dithiolan-2-yl)-Trp²⁵]-Liraglutide


STEREOISOMERS POSE A CHALLENGE FOR LIRAGLUTIDE

BACHEM

ENZYMATIC METHODS FOR D-ISOMERS

Liraglutide


Asp-N (Fragment 1-8)	Glu-C (Fragment 4-15)	3 rd impurity method (w/o enzyme)
	[D-Ser8] Liraglutide	[D-Glu15] Liraglutide [D-Lys20] Liraglutide
[D-His1]Liraglutide [D-Ala2] Liraglutide	[D-Asp9] Liraglutide	[D-Glu21] Liraglutide
[D-Glu3] Liraglutide	[D-Ser12] Liraglutide	[D-Phe22] Liraglutide

[D-Thr5] Liraglutide

Aften continue of digest and development of HPLC methods, spiking experiments were conducted to identify the D-isomers fragments

HPLC METHOD FOR D-ISOMERS OF ASP-N DIGEST

spiked with 0.5% of all six specified impurities (digested) (D)

BATCH RESULTS WITH ENZYMATIC METHODS

		[D-His1]	[D-Ala2]	[D-Glu3]	[D-Thr5]	[D-Phe6]	[D-Ser8]	[D-Ser12]	[D-Glu15]	[D-Glu21]	[D-Lys20]	[D-Phe22]
	Batch	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]	[%]
	Batch 9	0.13	<	<	<	<	0.27	0.06	<	<	<	0.07
	Batch 8	0.13	<	<	<	<	0.28	0.07	<	<	<	0.06
Ļ	Batch 7	0.13	<	<	<	<	0.27	0.07	<	<	<	<
[Batch 6	0.10	<	<	<	<	0.26	0.07	<	<	<	0.14
	Batch 5	0.11	<	<	<	<	0.27	0.06	<	<	<	0.14
Pr.Dev –	Batch 4	0.11	<	<	<	<	0.27	0.07	<	<	<	0.13
	Batch 3	0.12	<	0.05	<	<	0.30	0.08	<	0.05	<	0.16
	Batch 2	0.15	0.06	0.05	<	<	0.29	0.07	<	0.05	<	0.06
Ļ	Batch 1	0.19	0.07	0.07	<	<	0.30	0.08	0.06	<	<	0.07
	GS63P81	0.70	<	<	<	0.13	1.23	0.47	<	0.05	0.05	<
	JS69S28	0.47	<	0.41	<	0.09	1.20	0.45	<	<	<	<
RLD -	JS67Y95 (EU)	0.40	<	<	<	0.14	1.29	0.47	<	<	<	<
	JS68C66 (USA)	0.34	<	<	<	0.16	1.33	0.50	<	0.05	<	<
	JS68L68 (USA)	0.29	<	<	<	0.15	1.25	0.45	<	0.05	<	<
Ĺ	JS67T64 (USA)	0.37	<	<	<	0.15	1.36	0.50	<	0.06	<	<

ANALYTICAL TOOLBOX FOR PHASE III

Output: HPLC Purity Method Set of orthogonal methods to Determine purity of material determine purity, related Identify related impurities by MS 01 impurities & assay Quantify related impurities by LC UV Determine assay by HPLC **LC MS Quantitation** Co-eluting impurities unequivocally **Enzymatic Digest** 02 identified and quantified Impurities under main peak can be Reduce complexicity of large peptides quantified Resolve isomers that are challenging Necessary when selectivity can not to detect by LC-MS/MS 03 be achieved chromatographically Quantify impurities by LC-UV

BACHEM

REQUIREMENTS FOR PHASE III

01

Purity Purity ≥ 99.0% target

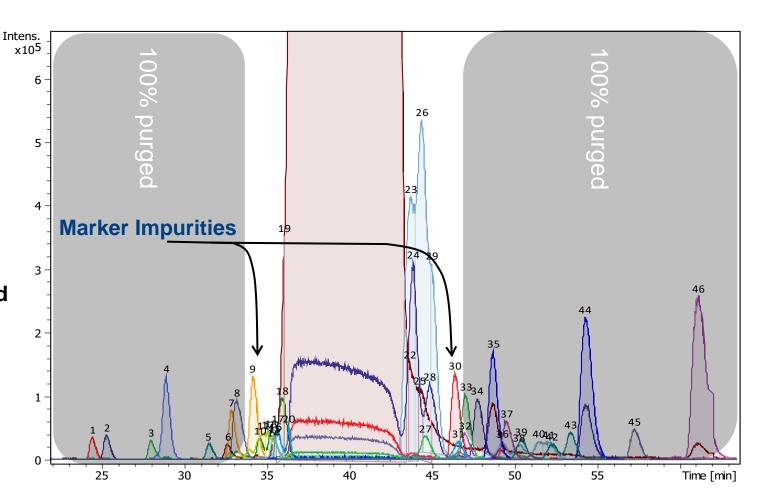
Process Understanding Origin and fate of impurities better understood

Related Impurities Report impurities ≥ 0.05 % Identify impurities ≥ 0.10 %

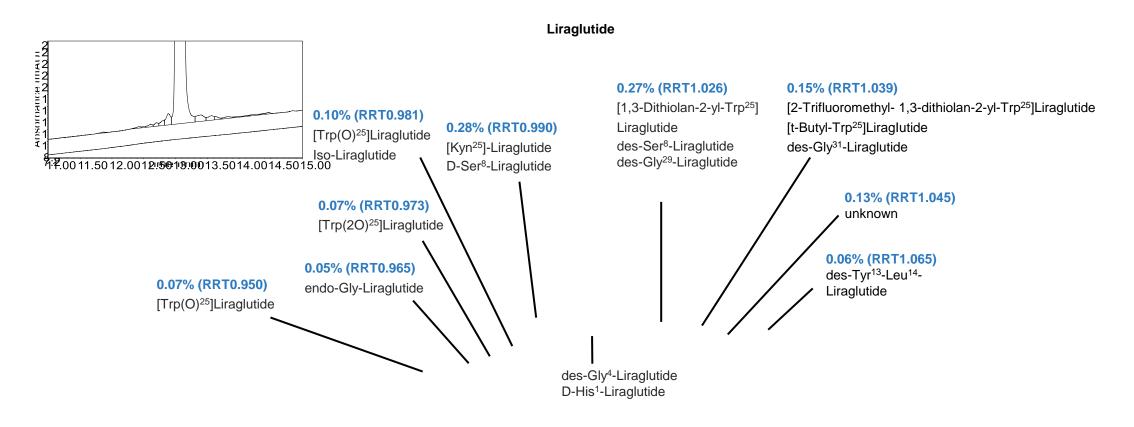
06

Comprehensive

methods enable detection of any Impurity or degradation product


Specificity specified impurities synthesized **Robustness**

methods developed and optimized to ensure reproducible results


PREP LC-MS FATE & PURGE HIGH EFFICIENCY

- Impurities identified by MS and spiking experiments in case of isomers
- Define critical impurities for fate & purge
- The data set allows definition of regions where purge factors of 100% are achieved
- No synthesis and fate and purge study will be necessary for unambiguously assignable substances

LIRAGLUTIDE PURITY METHOD

Reporting threshold: 0.05 %

LIRAGLUTIDE BATCH COMPARISON

Batch	Batc	h 1	Bat	ch 2	Bat	ch 3	Bat	ch 4	Bat	ch 5	Bat	ch 6	Bat	ch 7	Bat	ch 8
Assignment	% Area ⁽¹⁾	Δm	% Area ⁽¹⁾	Δm	% Area ⁽¹⁾	Δm	% Area ⁽¹⁾	Δm	% Area ⁽¹⁾	Δm	% Area ⁽¹⁾	Δm	% Area ⁽¹⁾	Δm	% Area ⁽¹⁾	Δm
RRT 0.950	0.07%	+16	<	-	0.06%	+16	<	-	<	-	<	-	<	-	<	-
RRT 0.96	<	-	<	-	0.05%	+57	0.05%	+57	<	-	<	-	<	-	<	-
RRT 0.973	0.07%	+32	0.07%	+32	0.06%	+32	0.06%	+32	<	-	0.06%	+32	<	-	<	-
RRT 0.981	0.07%	+16	0.07%	+16	0.09%	+16	0.09%	+16	0.09%	+16	0.08%	+16	0.05%	+16	0.05%	+16
Impurity 5								±0		±0		±0				
RRT 0.990	0.20%	+4	0.17%	+4	0.18%	+4	0.23%	+4	0.25%	+4	0.11%	+4	0.09%	+4	0.08%	+4
Impurity 1								±0		±0		±0		±0		±0
RRT 1.026	0.27%	+104	0.20%	+104 (1)	0.19%	+104 (6)	0.23%	-87 (1)	0.11%	-87 (2)	0.19%	-87 (4)	0.11%	-87	0.11%	-87 (4)
				-87 (1)		-87 (1)		-57 (1)		-57 (1)		-57 (1)				-57 (1)
Impurity 2						-57 (1)										
RRT 1.039	0.14%	+172	0.12%	+172 (2)	0.10%	+172	0.12%	+172 (5)	0.15%	+172 (2)	0.08%	+172 (1)	0.05%	+172 (1)	0.07%	+172 (1)
Impurity 3				+56 (1)				-57 (4)		-57 (1)		-57 (1)		-57 (1)		-57 (1)
										+56 (1)				+56 (1)		+56 (1)
RRT 1.045	0.13%	+115	0.08%	+115	0.09%	+115	0.05%	n.d.	0.13%	n.d.	<	-	<	-	<	-
Impurity 4																
RRT1 .060/1 065	0.06%	-276	<	-	<	-	0.06%	-276	0.06%	-276	<	-	<	-	<	-
RRT1.110	<	-	<	-	<	-	<	-	<	-	<	-	0.07%	+14	0.05%	+14
RRT 1.234	0.06%	+3632	<	-	<	-	<	-	<	-	<	-	<	-	<	-
Purity ⁽¹⁾	98.9	9%	99.	.3%	99.	.2%	99	.1%	99.	.1%	99	.4%	99.	.8%	99.	.7%

(1) Values taken from release analysis

LIRAGLUTIDE IMPURITY SPECIFICATIONS

RRT	Δm [u]	Proposed Structure	max. %area (UV) found	Present in RLD	Impurity specified
0.981	+16	[Trp(O) ²⁵]Liraglutide	0.10%	Yes	Specified impurity 5
0.990	+4	[Kyn ²⁵]Liraglutide	0.25%	No	Specified impurity 1
0.990	±0	iso-Liraglutide, D-Ser8	0.23%	Yes	Specified impurity 1
	+104	2-(1,3-Dithiolan-2-yl-Trp ²⁵]Liraglutide		No	
1.021 / 1.026	-87	des-Ser ⁸ -Liraglutide	0.27%	No	Specified impurity 2
	-57	des-Gly ²⁹ -Liraglutide		No	
	+172	[2-Trifluoromethyl-1,3-dithiolan-2-yl- Trp ²⁵]Liraglutide		No	
1.039	+56	[t-Butyl-Trp ²⁵]Liraglutide	0.15%	No	Specified impurity 3
	-57	des-Gly ³¹ -Liraglutide		Yes	
1.045	+115	unknown	0.13%	No	Impurity not present with final process

RELEASE METHOD AGILITY AND EXPERTISE IS CRUCIAL FOR THE SUCCESS OF COMPLEX PEPTIDE THERAPEUTICS

- Complex Peptide NCEs require product-specific method development
- Quality control strategy must fulfill the needs of various stakeholders
- Complex impurity profiles need to be addressed with tailored analytics
- Tight ANDA-driven requirements can be met for large synthetic peptides

Cutting-edge analytical capabilities ensure development success and patient safety

GREAT TEAM KEY TO SUCCESS

Analytical Development

Agron Selami, Michael Naeff, Patrik Plattner, Constanze Schmies, Jürgen Opitz

CMC / Projekt Management:

Michael Berger, Michael Wollmann

Review/Mentoring:

Roland Eberli

THANK YOU

bachem.com

Bachem AG 4416 Bubendorf Switzerland

Tel +41 585 95 20 21

E-Mail sales.ch@bachem.com Bachem Americas, Inc. Torrance, CA 90505 USA

Tel +1 888 422 24 36

E-Mail sales.us@bachem.com

Bachem Japan K.K. Tokyo 103-0012 Japan

Tel +81 3 6661 0774

E-Mail sales.jp@bachem.com

UNDERSTANDING AGGREGATION BEHAVIOUR IMPORTANT FOR PROCESS DEVELOPMENT AND QC

QC Testing

HPLC SEC

- Determination of HMWP
- Quantitative, robust, sensitive (LOQ 0.1%)
- Routinely applicable for release
- MS suitable

Aggregation Screening

DLS

Measure kintetics to detect molecules with larger hydrodynamic radius

THT Assay

Linear fluorescence assay relating to the original amount of seeds

CD Spectroscopy

Detect secondary structures Comparative measurement API formulation / RLD

1nm	10 nm	100 nm	1 µm	10 µm	100 µm	1 mm	1 cm		
Monomer	Oligomer	Higher Order	Soluble Aggregates	Insoluble Aggregates					
		Subvisible	Subvisible			Visible			

