Advances in Peptide Synthesis: Sustainable Approaches through Green Chemistry

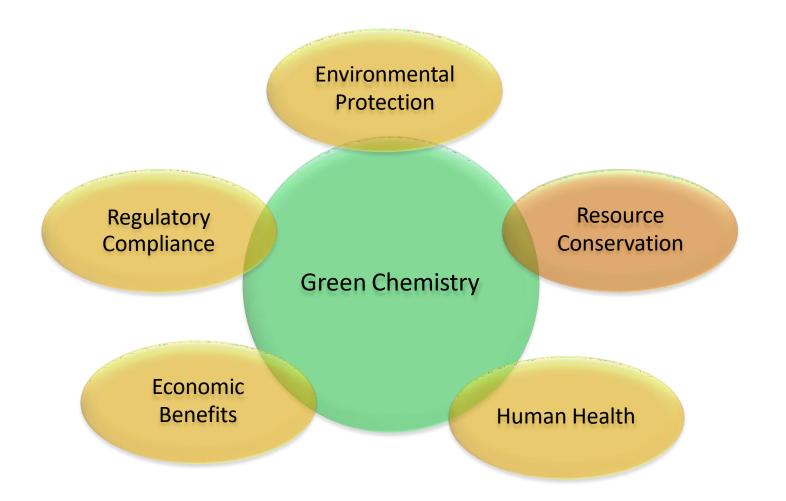
Mohan Dhote, Chandrakant Kulkarni Synthetic Peptides, Enzene Biosciences Ltd.

USP Workshop on Therapeutic Peptides and Oligonucleotides: Regulations and Quality Standards,

April 9-10, 2024

Passion Innovation Life

Strictly Confidential


Disclaimer

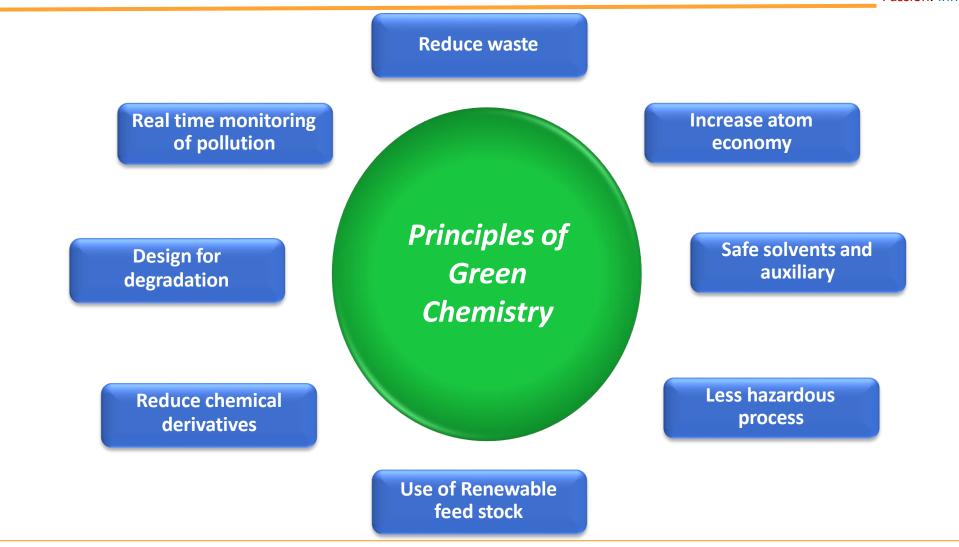
All content related to Enzene Biosciences Ltd.'s corporate and business activities, such as text, graphics, logos, button icons, images, audio clips and software, is the exclusive property of Enzene Biosciences Ltd., and is protected by applicable legislations concerning protection and preservation of intellectual property rights and international treaties relating thereto. The compilation (meaning the collection, arrangement and assembly) of all content on this presentation is also the exclusive property of Enzene Biosciences Ltd. and is protected by applicable laws as stated above. Any other use, including the modification, distribution, transmission, republication, reproduction, display or performance, of the content on this site is strictly prohibited.

Why Green Chemistry?

REACH: The European Chemicals Agency (ECHA)

REACH:

Registration Evolution Authorization and Restriction of Chemicals


REACH is the main EU law to protect human health and the environment from the risks that can be posed by chemicals.

From December 2023 DMF, DCM are restricted for industrial applications

END GOAL: Better protection from negative health effects on workers such as liver damage, GI toxicity etc.

Principles of Green Chemistry

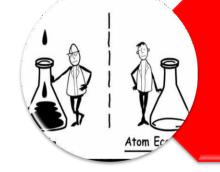
ENZENE BIOSCIENCES LTD.

Privileged and Confidential 5

Large solvent use	 Negative environmental footprint Most of the solvents in SPPS are environmentally hazardous and needs to be replaced 	
Poor Atom Economy	 Excess of Reagents used for maximum couplings Poor content, Excess of impurities and byproducts 	
Current regulation by REACH*	 Classic SPPS solvents DMF, DCM, NMP, DMAc heading for restriction for use 	

*Registration, Evaluation, Authorisation and Restriction of Chemicals

Pros and Cons of SPPS



Single pot reactions no major cleaning procedures, No intermediates isolation

Use of high boiling point solvents, Recycling possible

High mol wt of KSMs yield low atom economy

High efficiency and reduced labour hours

Large excesses of reagents required for good yields

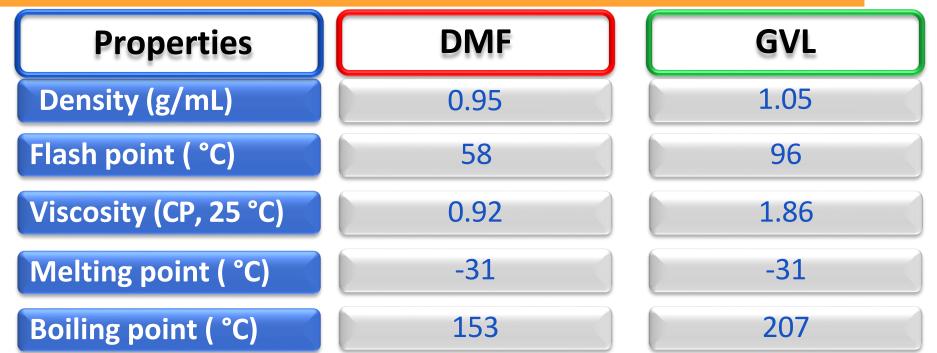
Excess reactants and soluble side products removed by filtration and washing

Green Chemistry approach addresses conventional challenges

Privileged and Confidential 7

Pros

Qualification Criteria for Solvents In SPPS



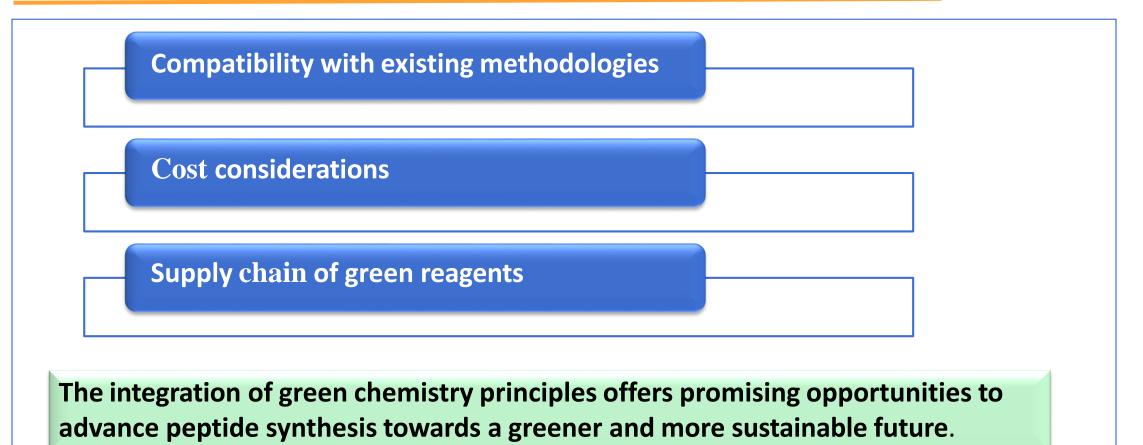
Viscosity and melting point	 Viscosity of ≤ 4 mPa*s viscosity nearer that of DMF (0.8 mPa*s) M.P. >10°C 	
Scalability	 Dissolution of Reactant and by-products Solubility ≥0.25 M (ideally up to 0.40 M) Good stability for at least one week at room temperature 	
Resin swelling	 Swelling range of approximately 4–7 ml/gm 	
Process performance	 Loading >1 mmol/g for short chain & > 0.30 mmol/g for long chain. The reaction time at room temperature should NMT 120 min and below 30–40 min for Fmoc-removal 	

GVL: Greener and Suitable Alternative to DMF

Passion. Innovation. Life

γ-Valerolactone (GVL) is a renewable, low-toxic molecule obtained from lignocellulosic biomass, and it is therefore non-toxic and biodegradable which presents interesting properties for usage as a solvent, supporting the development of sustainable and safe processes.

Reference : Dunn P.J. The importance of green chemistry in process research and development. Chem. Soc. Rev. 2012;41:1452–1461. doi: 10.1039/C1CS15041C.


Green Chemistry for SPPS: Changes Implement

Use of solvents like	GVL, NFM, Ethyl Acetate, Acetone	
Mix solvent strategy	Green solvent + conventional	
Effective coupling reagents	• T3P [®] , T-Bec [®] to increase productivity	
Change in de-protection strategy	• DBU/GVL & use of 1% Oxyma in DMF for washing	
Purification solvents	Use of Alcohols for purification of Peptides	
Recycling	Recycling of Solvents & resins	

Case Study

Conventional Protocol for SPPS

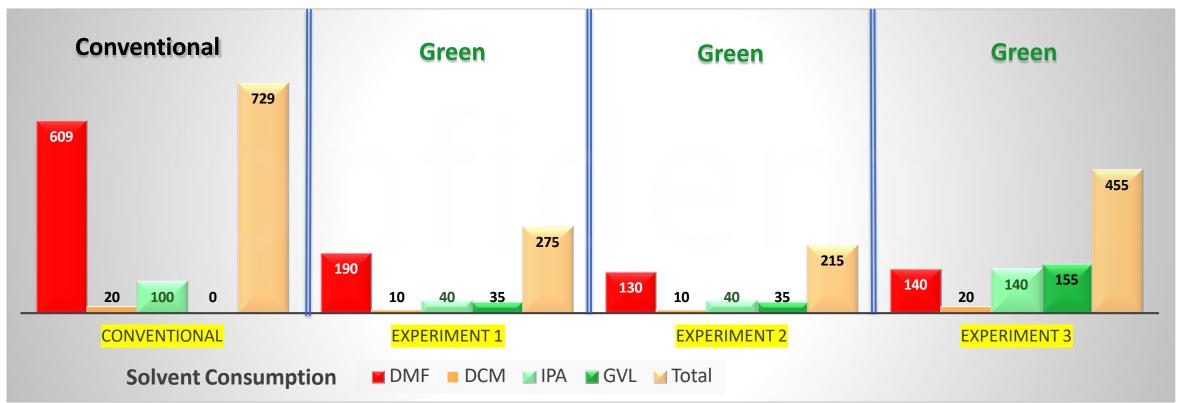
Synthesis	 Sequential coupling of Fmoc-Amino Acid using DIC-HOBt in DMF Washing after coupling DMF
Deprotection	 Removal of Fmoc- using Piperidine in DMF Washing with DMF and IPA after Fmoc-removal
Cleavage	 Cleavage & side chain de-protection using TFA and precipitation require excess amount of Ether
Oxidation	• Oxidation or S-S bond formation at lower concentration < 1.0 mg/ml
Purification	• RP Purification using Acetonitrile followed by lyophilisation

Synthesis of Octreotide Green- SPPS

Synthesis	 Coupling reagent to increase coupling efficiency T3P & Oxyma Use of GVL (γ- Valerolactone) for coupling and other process Use of mix solvents strategy for process 	
Deprotection	• Use of 4-Methy Piperidine/GVL, DBU/GVL for de-protection process	
Cleavage	 Cleavage & side chain de-protection using TFA and cold water, flammable Ether are completely eliminated 	
Oxidation	Consider the set of the set	
Purification	Use of Ethanol or Methanol for RP Purification	
runneation		

ENZENE BIOSCIENCES LTD.

Green -SPPS: Development Experiments


Synthesis of Peptidyl resin using GVL as coupling solvents with input Resin H-Thr(tBu)-OL-CTC

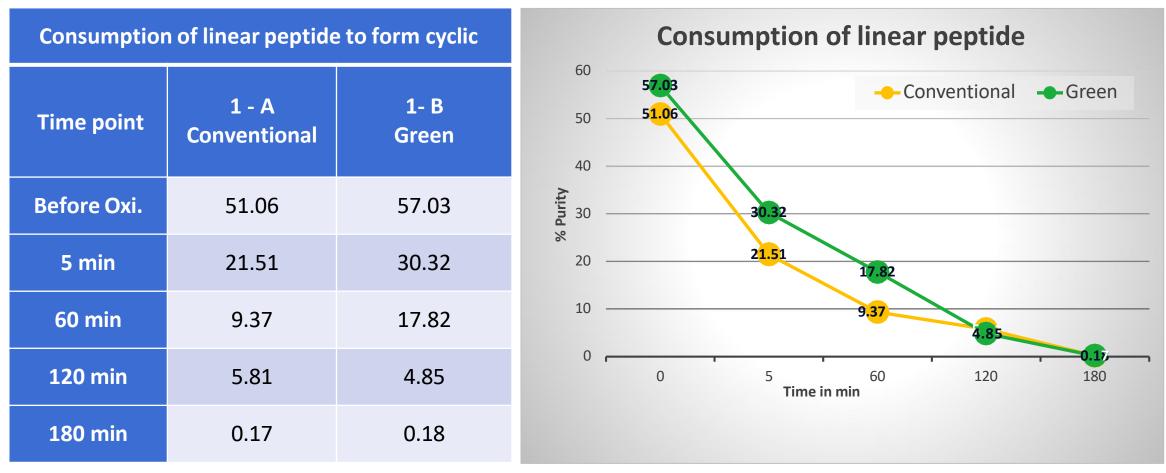
Conventional	Expt I	Expt II	Expt. — III
Conventional synthesis using AA: HOBt : DIC (1.5:2:2) DMF as solvent 10V	Coupling using T3P , (6 equi.), Oxyma (6 equi.) , DIEA (6 equi.) & GVL 5V as coupling solvent	Coupling using T3P , (6 equi.), Oxyma (6 equi.), DIEA (6 equi.) & GVL 5V as coupling solvent	Coupling using AA: HOBt. : DIC (1.5:2:2) & GVL 5V as solvent. No washings after coupling
O n	Washing solvent volume reduce to 50% as compare to conventional	No washings after coupling. After De-protection IPA wash, 2 washings of 1%	Fmoc-Deprotection using 2%DBU & 2% Piperidine in GVL
		Oxyma in DMF.	After de-protection IPA wash, 2 washings of HOBt in DMF
90 to 100 %	100%	87.1 %	100 %
	Conventional synthesis using AA: HOBt : DIC (1.5:2:2) DMF as solvent 10V	Conventional synthesis using AA: HOBt : DIC (1.5:2:2) DMF as solvent 10VCoupling using T3P, (6 equi.), Oxyma (6 equi.), DIEA (6 equi.) & GVL 5V as coupling solventWashing solvent volume reduce to 50% as compare to conventional	Conventional synthesis using AA: HOBt : DIC (1.5:2:2) DMF as solvent 10VCoupling using T3P, (6 equi.), Oxyma (6 equi.), DIEA (6 equi.) & GVL 5V as coupling solventCoupling using T3P, (6 equi.), Oxyma (6 equi.), DIEA (6 equi.) & GVL 5V as coupling solventWashing solvent volume reduce to 50% as compare to conventionalNo washings after coupling.After De-protection IPA wash, 2 washings of 1% Oxyma in DMF.

Green-SPPS: Development Experiments

Comparative solvent consumption in V/W* of resin during synthesis of peptidyl resin, conventional Vs Green approach

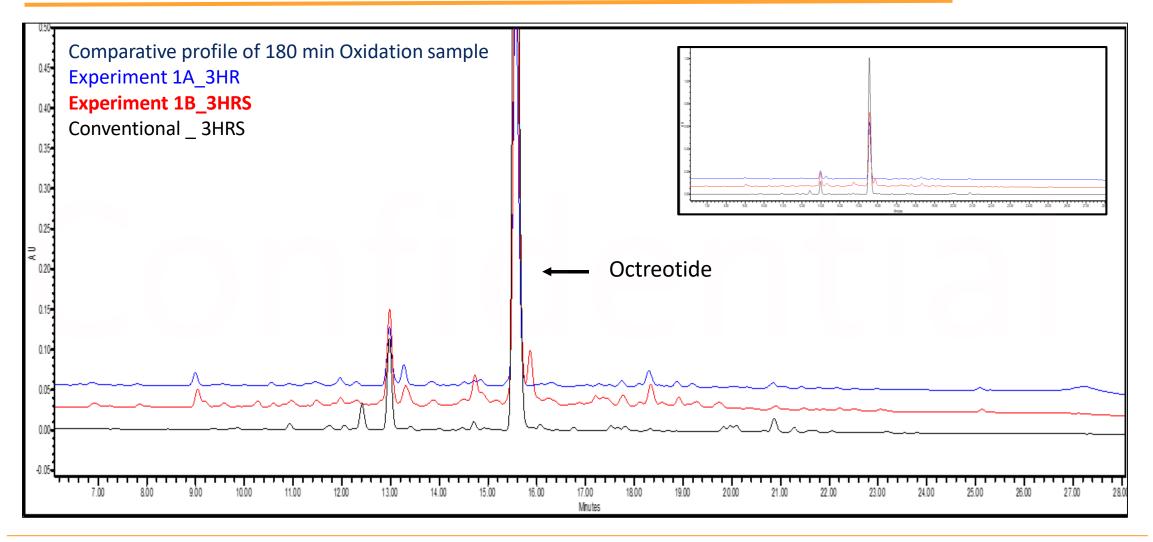
*All values are based on V/w of resin, e.g. for initial weight of 10 gm resin 10 volume will be 100 ml

Green-SPPS: Development Experiments


Greener approach in cleavage and oxidation process

Sr. No.	Experiment	Cleavage condition	Oxidation
1 2	Conventional Approach Experiment I-A	 Swell with 6V DCM 6V cocktail TFA:TIPS:DODT (90:5:5), 3Hr RT Filter resin, distillation, cooled 10 to 15C Precipitate with 6V Di-isopropyl Ether, Filter & Wash with MTBE. 	 Crude dissolve in water 1mg/ml pH 2.2 Charge Iodine 10% iodine Stir for 3Hrs, quench with 0.1M ascorbic acid Filter RM
3	Experiment I-B	 Swell with 6V DCM 6V cocktail TFA : TIPS : Water (90:5:5), 3Hr RT Filter resin, distillation, cooled 10 to 15C Dissolved in 100V cold water 	 Charge lodine 10 % iodine Stir for 3Hrs, quench with 0.1M ascorbic acid pH adjusted with 10N NaOH. to pH 6.0 Filter RM, 1micron whatman,1.2,0.45 micron filter

Green-SPPS: Development Experiments


Greener approach in cleavage and oxidation process

ENZENE BIOSCIENCES LTD.

HPLC analysis of Crude Octreotide Samples

Process impact of Green-SPPS Vs. Conventional

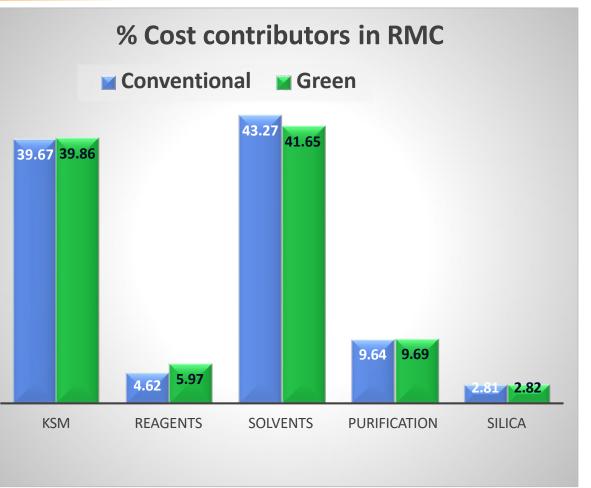
Use of potent hazardous solvent DMF can be reduce to 60-80%

Complete removal of DMF and DCM can not be possible for industrial approach

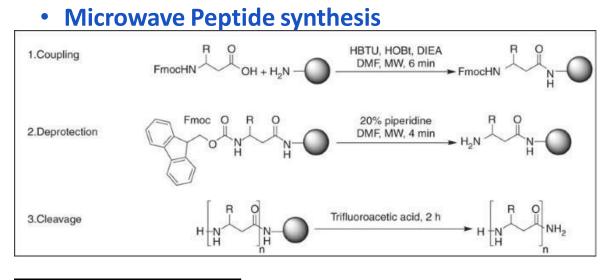
Less hazardous coupling reagents T3P, Oxyma can give similar results but higher molar concentration required

Peptides having lesser Amino acid (<10) shows identical results for both DMF and GVL solvents but impact on larger peptide sequence needs to be evaluate

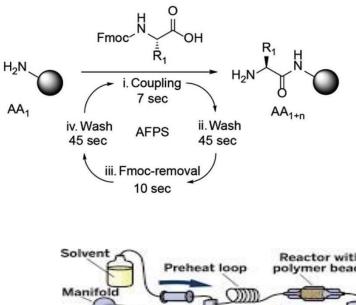
Particularly, in case of octreotide highly flammable ethers can be completely removed by quenching reaction mass in water. No major impact observed on quality

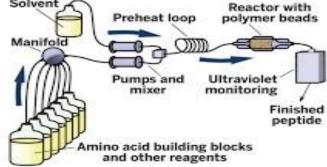

Commercial Aspects

% Cost contributors	n Raw Mate	erial Consumption

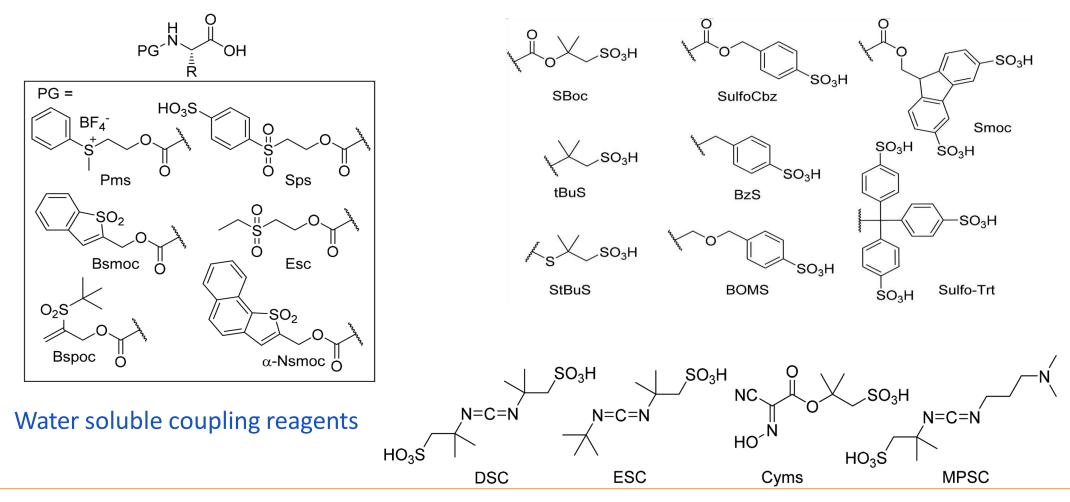

Raw Materials	Conventional	Green
KSM	39.67	39.86
Reagents	4.62	5.97
Solvents	43.27	41.65
Purification	9.64	9.69
Silica	2.81	2.82
Cost per Gram (USD)	Both has same RMC	

• Lack of commercial availability of green Solvents create impact on Raw material costing on industrial scale.


Use of non conventional technologies



Automated fast-flow peptide synthesis (AFPS)



Water soluble reagents for SPPS

Water soluble Sulphonated protecting Groups

ENZENE BIOSCIENCES LTD.

Privileged and Confidential 22

Points of consideration: Industrial use of Green SPPS

Changing the solvent system, ROS, use of new technology likely affect the purity profile of API

New impurities generated in process will have to be qualify in new toxicology studies

Changes are only made if there is a substantial financial incentive or if required by the authorities

Who we are

Enzene is an innovation-driven, technologyled differentiated biotech company offering integrated CDMO services for Biopharma

Enzene Biosciences Ltd, Pune

Enzene Mammalian Mfg., Pune

Enzene Inc, New Jersey

Enzene Microbial Mfg., Pune

- Enzene, a subsidiary of Alkem Laboratories Ltd. and VCbacked firm, offers fully integrated platform from Discovery and Development to Fill & Finish across wide range of modalities
- We operate state-of-the-art R&D facility with Ambr 250 bioreactor and 8 more bioreactors² (2L-10L) and cGMP manufacturing facilities with 5 suites (20L-2000L) across fed-batch, semi-continuous & patented continuous manufacturing, EnzeneX[™] (among first movers globally) We have GMP facility with supporting lab coming up in US (54,000 sq. ft.) by Q3 2024. We also have discovery service unit coming up in India by mid-2024
- Our technical expertise, flexibility and tailor-made solutions, regardless of project scope or scale, makes outsourcing easy
- 6 CLD (India), 1 CLD (Global), 2 PD (Global), 2 Pre-clinical (Global), 1 Pre-clinical (India), 6 Phase 1 (Global), 2 Phase 1 (India), 3 Phase 3 (India), 1 Phase 3 (Global), 7 Commercial (India)
- 2 additional bioreactor orders have been placed; Delivery expected by Apr'23

Green chemistry is replacing our industrial chemistry with nature's recipe book. It's not easy, because life uses only a subset of the elements in the periodic table. And we use all of them, even the toxic ones.

Janine Benyus